
A S A - C R - 2 0 0 6 4 4

/pi8 *

Final Report

A Single Chip VLSl Implementation of a QPSWSQPSK
Demodulator For A VSAT Receiver Station.

Submitted to:

NASA Lewis Research Center
21 000 Brookpark Road
Cleveland, OH 44135

Submitted by:

Dr. S.C. Kwatra
Principal Investigator

Brent King
Graduate Research Assistant

Department of Electrical Engineering
College of Engineering

University of Toledo
Toledo, OH 43606

Report No. DTVl - 43

June 1995

Final Report

A Single Chip VLSI Implementation of a QPSWSQPSK
Demodulator For A VSAT Receiver Station.

Submitted to:

NASA Lewis Research Center
21 000 Brookpark Road
Cleveland, OH 44135

Submitted by:

Dr. S.C. Kwatra
Principal Investigator

Brent King
Graduate Research Assistant

Department of Electrical Engineering
College of Engineering

University of Toledo
Toledo, OH 43606

Report No. DTVl - 43

June 1995

An Abstract of

A Single Chip VLSl Implementation of a QPSWSQPSK
Demodulator For A VSAT Receiver Station.

By Brent King

Submitted as partial fulfillment of the requirements for
the Master of Science Degree in

Electrical Engineering.

University of Toledo
June 1995

This thesis presents a VLSl implementation of a QPSWSQPSK

demodulator. It is designed to be employed in a VSAT earth station that utilizes the

FDMA/TDM link. A single chip architecture is used to enable this chip to be easily

employed in the VSAT system. This demodulator contains lowpass filters, integrate and

dump units, unique word detectors, a timing recovery unit, a phase recovery unit and a

down conversion unit.

The design stages start with a functional representation of the system by

using the C programming language. Then it progresses into a register based

representation using the VHDL language. The layout components are designed based

on these VHDL models and simulated. Component generators are developed for the

adder, multiplier, read-only memory and serial access memory in order to shorten the

design time. These sub-components are then block routed to form the main components

of the system. The main components are block routed to form the final demodulator.

11

Acknowledgments

I would like to express my deep and sincere appreciation to Dr. S.C.

Kwatra for his time, patience and support. I would also like to thank Dr. A.G. Eldin

for his countless answers to my countless questions. It is a privilege to work with

such knowledgable professors. Their guidance has been invaluable to my

research. I would like to thank Robert E. Jones and Dr. Ed Smith for their

participation in the project and for serving as members of my committee.

My thanks also go out to William B. Curry I I who helped me

endlessly with the communications concepts involved in my research. Also Dinraj

Shetty, Subhash Chintamaneni, and Mohan Pakurti helped me in learning and

implementing the VLSl tools.

Lastly, I would like to express my thanks to my Mother. She has

been a real inspiration and has supported me from the very beginning. I know that

she will be the happiest person on the day of my graduation.

...
111

This report contains part of the work performed under NASA grant NAG3-
799 during the period January 1994 to June 1995. The research was performed
as part of the Master's thesis requirement for Mr. Brent King.

Dr. S.C. Kwatra

Principal Investigator

Table of Contents

Abstract .. i i
Acknowledgements ... 1 1 1
Table of Contents .. iv
Tabe of Figures ... viii
List of Tables ... xii

...

...

Chapter 1 Introduction 1
1 . 0 Recent Advances ... 1

1.1 VSAT Terminals ... 1
1.2 Demodulator ... 2
1.3 Previous Work .. 2
1.4
1.4.1 System Specifications .. 3
1.4.2 Tools Used ... 6
1.5 Chapter Summaries ... 7

Objective of This Work ... 3

Chapter 2 System Background 10
2.0 Quadrature Phase Shift Keying IO

2.1 Staggered Quadrature Phase Shift Keying 11
2.2 Gray Coding ... 13
2.3 Demodulation ... 14
2.4 FDMAiTDM Link ... 15
2.5 Slot Format ... 16

Chapter 3 Architecture 18
3.0 The Demodulator ... 18

3.1 Correlation Receiver ... 19
3.1.1 Numerically Controlled Oscillator 21
3.1.2 Multiplier ... 22
3.1.3 Lowpass Filter .. 22
3.1.4 Integrate and Dump Unit .. 26
3.2 Phase Recovery Unit .. 27
3.3 Timing Recovery Unit ... 32
3.4 Unique Word Detection .. 35

Chapter 4 Generators
4.0 Design Considerations ... 38

4.1 Area and Performance ... 38
4.2 Hierarchy .. 39
4.3 Regularity ... 40

iv

4.4 Modularity ... 40
4.5 Generators ... 40
4.6 Adder Generator .. 41
4.6.1 Basic Cells ... 43
4.6.2 Algorithm .. 44
4.6.3 Output .. 45
4.7 Multiplier Generator .. 46
4.7.1 Basic Cells ... 46
4.7.2 Algorithms .. 47
4.7.3 output .. 49
4.8 Read Only Memory .. 50
4.8.1 Organization and Operation ... 50
4.9 Row Decoder Generator .. 52
4.9.1 Row Decoder Basic Cells ... 52
4.9.2 Algorithm for the Row Decoder 53

4.1 0 ROM Memory Array ... 55
4.1 0.1 Basic Cells ... 57

4.10.3 Output .. 60
4.1 1 ROM Generator .. 60
4.1 1.1 Output .. 61
4.1 1.2 Bus Generator .. 61
4.1 1.3 Basic Cells ... 62
4.1 1.4 Algorithm .. 63
4.1 1.5 Output .. 64
4.12 Decoder Input Buffers .. 64
4.13 Serial Memory Generator ... 65
4.1 3.1 Basic Cells ... 65
4.13.2 Algorithm .. 66
4.13.3 Output .. 67

4.9.3 output .. 54

4.1 0.2 Algorithm .. 59

Chapter 5 Main Components 68
5.0 Development of Main Components 68

5.1 Numerically Controlled Oscillator 68
5.1.1 Organization and Layout .. 70
5.2 Lowpass Filter .. 72
5.2.1 Organization and Layout .. 75
5.2.2 Simulation .. 77
5.3 Integrate and Dump Unit .. 78
5.3.1 Layout and Organization .. 78
5.3.2 Simulation .. 79
5.4 Phase Recovery Unit ... 80
5.4.1 Layout and Organization .. 82

V

5.4.2 Simulation .. 84
5.5
5.5.1 Layout and Organization .. 84
5.5.2 Simulation .. 86
5.6 Unique Word Detection .. 87
5.6.1
5.6.2 Simulation .. 91

Timing Recovery Unit ... 84

Organization and Layout .. 89

Chapter 6 Chip Layout 92
6.0 Clocking Scheme ... 92

6.1 Buffering Scheme ... 94
6.2 Arrangement of Components ... 94
6.3 Final Design of Demod ... 95

Chapter 7 Simulation 96
~ ~

7.0 Simulation ... 96
7.1 Formula Based System Representation 97
7.1.1 Pseudo Random Number Generator 97
7.1.2 Modulator ... 99
7.1.3 Bandpass Filter .. 101
7.1.4 Sampler .. 102
7.1.5 Additive White Gaussian Noise 103
7.1.6 Demodulator ... 104
7.2 VHDL Register Level Simulation 106
7.2.1 VHDL Representation .. 106
7.3 Layout Simulation ... 109
7.4 Symbol Error verses Eb/No Simulation 109

Chapter 8 Conclusions 113
8.0 Conclusions .. 113

8.1 Future Research .. 114
8.2 Timing Recovery .. 114
8.3 8PSK and 16QAM .. 114
8.4 Assume Off-Chip Analog Downconversion 116
8.5 Baud Rate = IF ... 116
8.6 Simulation with BOSS. SPW .. 117

Amendix A Generator Code 118
A.0 Contents ... 118

vi

A . 1
A.2
A.3
A.4
A.5
A . 6
A.7
A.8
A.9

Code Template for a Generator 1 18
Adder Generator Code .. 119
Multiplier Generator Code .. 124
Read ROM Array Cells .. 129
Read Row Decoder Cells .. 130
ROM Array Generator Code .. 130
Row Decoder Generator Code 137
ROM generator .. 143
Serial Access Memory Generator Code 148

Appendix B MicroRoute Tips 151
B.0 introduction .. 151

6.1 Steps Before MicroRoute ... 151

Appendix C VHDL Code 155
C.0 Contents .. 155

C.l Adder Cell Code .. 155
C.2 AND Gate Code ... 157
C.3 Counter Code .. 157
C.4 Inverter Code ... 160
C.5 Latch Cell Code ... 160
6.6 Master Section of the SAM Code 161
C.7 Multiplexer Cell Code .. 162
C.8 One Shot Code .. 163
C.9 OR Cell Code .. 163
C.10 Quadrant Detection Unit Code 164
6.1 1 Slave Section of the SAM Code 165
C.12 XOR Cell Code .. 166
C.13 Modulator Samples Code .. 166
C.14 Phase ROM Code ... 173
C.15 Viterbi Non Linear ROM Code 177
C.16 Numerically Controlled Oscillator ROM Code 181

Appendix D Simulation In C 186
D.0 Modulator Code ... 186

D.l Demodulator Code .. 199
D.2 Programming The NCO ROM 211
D.3 Programming The Non-Linear ROM 212
D.4 Programming The Phase Estimate ROM 220

vii

List of Figures

ChaDter 1 Introduction 1
Fig . 1 . 0 VSAT Antenna ... 1
Fig . 1 . 1 Frame Length .. 4
Fig . 1.2 Symbol Rate and Data Rate .. 5
Fig . 1.3 Signal Spectrums ... 5

Chapter 2 System Background 10
Fig . 2.0 QPSK modulator .. 11
Fig . 2.1 SQPSK Modulator ... 12
Fig . 2.2 Band Limited QPSK and SQPSK 13
Fig . 2.3 a) Transmitted Symbol, b) Effect of Noise on Symbol 13
Fig . 2.4 Block Diagram of Demodulator .. 14

Fig . 2.6 Time division multiplexing scheme 16
Fig . 2.7 Slot Format .. 17

Fig . 2.5 FDMA access scheme ... 15

Chapter 3 Architecture 18
Fig . 3.0 Demodulator Block Diagram .. 18
Fig . 3.1 Correlation Receiver .. 19
Fig . 3.2 A QPSWSQPSK Demodulator .. 20
Fig . 3.3 QPSWSQPSK Correlation Receiver 20
Fig . 3.4 Numerically Controlled Oscillator 21
Fig . 3.5 Multiplier Architecture .. 22
Fig . 3.6 Typical FIR Approximation of an Ideal LPF 24
Fig . 3.7 Amplitude Response of the LPF 25
Fig . 3.8 LPF Architecture .. 25
Fig . 3.9 Amplitude Response of the IDU 27
Fig . 3.1 0 IDU Representation ... 27
Fig . 3-1 1 Front End of the PRU .. 29

Fig . 3.1 3 Timing Recovery Unit .. 33
Fig . 3.1 4 Delaying of the Channel Transitions 35
Fig . 3.1 5 Unique Word Detectors ... 36

Fig . 3.12 PWU Block Diagram ... 32

Chapter 4 Generators 38
Fig . 4.0 Area Considerations .. 38
Fig . 4.1 Component Template .. 39
Fig . 4.2 Transmission Gate Adder Cell ... 42
Fig . 4.3 N-bit Adder ... 42

viii

List of Figures

Fig . 4.4 Simulation of the Basic Cell ... 43

Fig . 4.6 8-bit Ripple Carry Adder .. 45
Fig . 4.7 Simulation of 8 Bit Adder ... 45

Fig . 4.9 Multiplier Basic Cells .. 47

Fig . 4.5 Adder Generator Algorithm .. 44

Fig . 4.8 Multiplier Cell Block Diagram ... 46

Fig . 4.1 0 Flow Chart for Multiplier ... 48
Fig . 4.1 1 Output of Multiplier Generator 49
Fig . 4.1 2 Organization of the ROM ... 50
Fig . 4.1 3 Rom Clocking Scheme .. 51
Fig . 4.1 4 AND based Tree Decoder ... 52
Fig . 4.1 5 Row Decoder Basic Cells .. 53
Fig . 4.1 6 Row Decoder Algorithm ... 54
Fig . 4.1 7 Decoder Generator Output .. 54
Fig . 4.1 8 Simulation of the Row Decoder With Buffered Output ... 55
Fig . 4.1 9 Pre-Charge Circuit ... 56
Fig . 4.20 ROM Array ... 57
Fig . 4.21 Pre-Charge Cells ... 57
Fig . 4.22 ROM Array Basic Cells .. 58
Fig . 4.23 Pass Transistor .. 58
Fig . 4.24 ROM Array Algorithm ... 59
Fig . 4.25 ROM Array ... 60
Fig . 4.26 Output of the ROM Array Generator 61
Fig . 4.27 10-bit Bus ... 62
Fig . 4.28 Sense Amp .. 62
Fig . 4.29 Static Column Decoder .. 63
Fig . 4.30 Bus Generator Flow Chart ... 63
Fig . 4.31 Bus Generator Output .. 64
Fig . 4.32 Decoder Buffers ... 64
Fig . 4.33 SAM cell ... 65
Fig . 4.34 Serial Access Memory Algorithm 66
Fig . 4.35 Serial Memory Array (5 x 3) ... 67
Fig . 4.36 Simulation of 5 x 3 SAM .. 67

Chapter 5 Main Components 68
Fig . 5.0 Binary Accumulator .. 68
Fig . 5.1 Accumulation Example .. 69
Fig . 5.2 Organization of the NCO ... 71
Fig . 5.3 Layout of NCO ... 71
Fig . 5.4 Simulation of the NCO ... 72
Fig . 5.5 Sample Multiplication ... 73
Fig . 5.6 Sample Multiplication ... 74
Fig . 5.7 Organization of Lowpass Filter .. 76
Fig . 5.8 Layout of Lowpass Filter .. 76

ix

List of Figures

Fig . 5.9 Amplitude Response of the Lowpass
Fig . 5.1 0 Spectrum After Filter
Fig . 5.1 1 Organization of Integrate and Dump Unit 79

.................... 77
..................... 77

Fig . 5.1 2 Layout of IDU ... 79
Fig . 5.1 3 Simulation .. 80
Fig . 5.1 4 Accumulator Structure ... 80
Fig . 5.1 5 PRU Clocking Scheme .. 81

Fig . 5.1 7 4-State Counter Circuit .. 82

Fig . 5.1 9 Layout of Phase Recovery Unit 83
Fig . 5.20 Simulation of the PRU ... 84
Fig . 5.21 Organization of the TRU .. 85
Fig . 5.22 Layout of the TRU .. 86
Fig . 5.23 Simulation of Timing Recovery Unit 86
Fig . 5.24 Example of Unique Word Detector 87
Fig . 5.25 Example of Unique Word Detector 88
Fig . 5.26 Unique Word Detector ... 88
Fig . 5.27 Typical Output of UWD .. 89
Fig . 5.28 Organization of UWD ... 90
Fig . 5.29 Layout .. 91
Fig . 5.30 Simulation .. 91

Fig . 5.1 6 PRU Clock Unit .. 81

Fig . 5.1 8 Organization of Phase Recovery Unit 83

Chapter 6 Chip Layout 92
Fig . 6.0 Chip Clocks .. 92
Fig . 6.1 Clock Shaping Circuitry ... 93
Fig . 6.2 Simulation of Clock Shaping Circuits 93
Fig . 6.3 Buffering Scheme .. 94
Fig . 6.4 Organization of the Demodulator Chip 94

Chapter 7 Simulation 96
Fig . 7.0 Formula Based System Block Diagram 97

Fig . 7.3 Spectrum of the Modulated QPSK Signal 101

Fig . 7.5 Spectrum of the 4 Samples Per Symbol Signal 102

Fig . 7.1 Spectrum of the Sampled Baseband Signal 100
Fig . 7.2 QPSK Signal .. 100

Fig . 7.4 Bandpass Filtered Spectrum ... 102

Fig . 7.6 Power in One Sample Period .. 103
Fig . 7.7 Inphase Samples ... 105
Fig . 7.8 Inphase Signal Decisions .. 105
Fig . 7.9 Icon of Adder Cell .. 107
Fig . 7.1 0 Ripple Carry Adder Representation (8-bit) 108
Fig . 7.1 1 VHDL Low Pass Filter .. 109

X

List of Figures

Fig . 7.1 2 Pe Simulation Results .. 1 11
Fig . 7.1 3 Affects of Increasing The Bandwidth of the Bandpass Filter1 12

Chapter 8 Conclusions 113
Fig . 8.0 8PSK Demodulator .. 1 15
Fig . 8.1 16QAM Demodulator ... 1 15
Fig . 8.2 Sinusoidal Samples ... 1 16
Fig . 8.3 Simple Downconversion Unit ... 1 17

xi

List of Tables

Chapter 1 Introduction 1
Table 1 : System Specifications ... 4

Chapter 3 Architecture 18
Table 2: Quadrant Decision ... 37

Chapter 5 Main Components 68
Table 3: NCO Components ... 70
Table 4: Power of Two Coefficients 73
Table 5: LPF Components .. 75
Table 6: Component list for IDU .. 78
Table 7: Components List for PRU .. 82
Table 8: Components List for TRU .. 85
Table 9: Component List for the UWD 90

Chapter 6 Chip Layout 92
Table 10: Area of the Main Components 95

Chapter 7 Simulation 96
Table 11 : RND Number to Symbol Conversion 98

xii

Chapter 1 Introduction
1.0 Recent Advances

Recent advances in technology have prompted a new era in

communication systems. Smaller, faster chips as well as more powerful and

efficient antennas are just a few of these advances. This is encouraging the

renovation of existing systems so that they will become higher in performance as

well as conform to the needs of more users. The satellite industry is now applying

these advances to the satellite communication systems and are creating systems

that are smaller, less complex and more user oriented. The systems that were once

dominated by the government and large industry will now be shared by smaller

organizations.

1.1 VSAT Terminals

This renovation is pointing to a new generation of earth stations which

are known as very small aperture terminals (VSAT) [l]. The antenna apertures for

VSAT stations are to be approximately one meter in diameter, greatly reducing the

size of the system.

Indoor Unit

Fig. 1 .O VSAT Antenna

1

Chapter 1 : Introduction 2

VSAT will have advantages over existing terrestrial systems such as a lower

operating cost, ease of installation and maintenance, and support for

multiservices. Some VSAT applications will be credit authorization, long distance

voice and data communications, and electronic mail. A network of VSAT terminals

will be placed in a star formation and will communicate to a central hub station via

satellite. The signals will be transmitted and received in a statistically bursty

fashion and the users are expected to share the satellites resources in a

cooperative manner.

1.2 Demodulator

Earth stations are composed of many complex components.

Reducing the number and complexity of these components will improve the

performance of the entire system. One way to do this is to design a better earth

station demodulator.

1.3 Previous Work

Previous research is done by Dave Wagner at the University of

Toledo [2]. He accomplished an architectural design as well as a layout design of

an earthstation demodulator but was unable to meet some of the targeted

performance requirements of the design. The leading factors in the degradation of

the performance are the CMOS technology used and the tools that were

available. The 1 . 2 ~ CMOS technology is used in his design which is quite large

compared to the 0 . 8 ~ technology used today. It is very difficult to fit such a large

design in a frame area of lcm2 using this CMOS process. The layout tool used in

Dave’s research is called Magic, which is an introductory layout editor and is not

Chapter 1 : Introduction 3

up to industry standards. It is very difficult to design large circuits with Magic, so

public circuit libraries from other universities are used to gather the larger circuits,

such as the read-only memory (ROM). This resulted in circuits that are not

optimized to work together in the system and, therefore, degraded the

performance of the demodulator.

1.4 Objective of This Work

The objective of this research is to design a high performance

QPSWSQPSK demodulator that can be used in an FDMA/TDM VSAT system. In

an effort to implement all analog circuitry with digital circuitry, this demodulator will

be equipped with a digital downconversion unit. The only requirement is that the

transmitted signal be passed through an A/D converter. All of the components of

the demodulator will be placed onto a single chip, increasing the performance as

well as decreasing the cost and size of the system. Throughout this research, the

emphasis will be on decreasing the complexity of the system, which includes

designing a demodulator with minimal external control signals. The process

technology that will be used to design the demodulator is 0 . 8 ~ CMOS technology

developed by Hewlett Packard.

1.4.1 System Specifications

initial system specifications will be used in order to create a starting

point in the design stage. The specifications that will be used are listed below in

Table 1 :

Chapter 1 : Introduction 4

L

A B C D E F G H I J

Table 1 : System Specifications

Demodulation I QPSWSQPSK

Frame Length

IF Input 25 MHz t Data Rate 50 Mbps

The frame length is the total amount of time that it takes for the satellite to

communicate with all of it’s assigned earth stations. The assumption made is that

there are 10 earth stations that the satellite will communicate with in 3ms bursts.

Fig. 1.1 shows a diagram of a typical frame schedule, where the satellite

communicates with earth station A through earth station J and then repeats.

Fig. 1.1 Frame Length

Efficient signal transmission is done at very high radio frequencies

(RF). Efficient processing of the signal should be done at lower intermediate

frequencies (IF) because today’s technology does not allow processing at RF very

easily. Therefore, the RF signal must be translated into an equivalent IF signal

before it enters the demodulator. To find the proper IF range, the data rate must

be inspected first. High performance demodulators require very high data rates.

The target data rate for this demodulator is chosen to be 50MHz. The output data

is obtained by multiplexing the symbols in the I and Q channels so the symbol rate

Chapter 1 : Introduction 5

will be half of the data rate as shown in Fig. 1.2. This makes the symbol rate equal

to 25MHz.

40ns Symbol rate = 25MHz
-1

I Channel 20ns Data rate = 50MHz
H

M ulti plexin -\
- 7

Q Channel ~1
Fig. 1.2 Symbol Rate and Data Rate

Each symbol will be sampled 4 times which leads to a sampling rate of 1OOMHz.

The Nyquist theorem states that a signal should be sampled at a rate at least

twice it's highest frequency. If the IF is set to 25MHz, then the Nyquist theorem is

satisfied. Fig. 1.3 shows the power spectrum of the message signal M(f) and the

transmitted signal S(f) with an IF of 25MHz. The transmitted signal's highest

frequency component is 50MHz so the sampling rate can be at least 1OOMHz. A

sampling rate of 1OOMHz corresponds to a 10ns period in which the samples will

need to be processed by the components in the demodulator..

f I
25MHz

' 50MHz

Fig. 1.3 Signal Spectrums

Chapter 1 : Introduction 6

1.4.2 Tools Used

The tools available for this research are much more sophisticated

than the earlier tools. The University has purchased CAD tools owned by Mentor

Graphics which give the students industrial experience in VLSl design work.

Mentor Graphics tools are user friendly and have a wide variety of user interfaces

to help in the design stages. The Mentor Graphics software tools used in this

research are VHDL, VHDLsim, Led, Lx, Lsim and MicroRoute.

VHDL is used to describe hardware for the purpose of simulating,

modeling, testing, and designing digital systems. A behavioral model written in the

VHDL language describes the operation as well as the delay of a component.

Many VHDL components can be connected together to form a circuit structure

which can then be simulated. Mentor Graphics Explorer VHDLsim is an electronic

design tool that simulates the behavior of digital circuits that have been written in

the VHDL language. Some advantages of using VHDL are the ease of

interchanging components during the design stage and the short simulation time

needed.

The Mentor Graphics Led is used to design the circuitry that will be

used in the digital system. Led supports two levels of transistor representation:

schematic capture level and layout level representation. The schematic capture

level representation allows the designer to quickly assemble circuits and obtain

some initial transistor sizes. The layout representation allows the designer to

place the transistors exactly as they will be when fabricated. The different metal

layers are also specified in this representation. The layout representation

possesses all of the characteristics that are needed to fabricate the circuit, which

includes all transistor sizes as well as final circuit area.

Chapter 1 : Introduction 7

Mentor Graphics Lsim is a multi-level simulator. There are three

different modes of simulation that cater to the needs of the designer. These

different modes are the switched mode, adept mode and mixed mode operation.

When simulating large circuits or just checking the connectivity of a circuit, the

switched mode simulation allows for very fast results. Each transistor is

represented as a switch and does not have the characteristics of a true transistor,

so the simulation results have no delay information nor does it have the

characteristics of the circuit’s true output. The adept mode is a realistic

representation of simulation where each transistor is described by an equation.

This calculation intensive procedure takes a vast amount of time but it results in a

reliable output waveform. The mixed mode operation allows both switched

simulation and adept simulation to occur at the same time.

Lx is a procedural interface to the L database and Led graphics

editor. It is built from a set of database interface functions and from general

purpose language called GENIE. Lx provides access to the information within the

L database and provides interaction with the Led graphics editor. This interface is

an important tool in the development of component generators.

The circuit routing is accomplished using Mentor Graphics

MicroRoute. An initial component placement and a netlist that describes the

connectivity among the components is all that is needed. It then creates channels

for which it wjll route the components. Pre-routing is done for power and ground

lines in order to keep them regular. Finally, routing is completed channel by

channel until the entire circuit is routed.

1.5 Chapter Summaries

Chapter 2 contains background information pertaining to the

Chapter 1 : Introduction 8

proposed VSAT system. It covers the basics behind QPSK and SQPSK

modulation and some of the advantages of each of these modulation schemes.

The FDMMDM satellite link is illustrated, and the preamble structure for this type

of link is covered.

The architectures of all of the main components are introduced in

Chapter 3. These architectures are chosen such that they are easily implemented

with digital circuitry as well as quickly assembled. Other architectural decisions

are based on the performance of the algorithm.

Chapter 4 shows the design stages for the commonly used sub-

components that will be used in the system. Generators are developed for the

binary adder, multiplier, read-only memory and serial access memory.

The design of the main blocks is covered in Chapter 5. The main

blocks are composed of the generated components and glue logic. MicroRoute is

used to do the block routing of these sub-components to form the main

components.

Chapter 6 illustrates the organization of the chip. A tree buffering

scheme is used in order to equalize the delay to all of the components.

Simulation and verification are introduced in Chapter 7. Behavioral

level and register level simulations are done on the system. Test vectors are used

to verify the connectivity and the functionality of all of the component blocks.

The conclusions and future research are found in Chapter 8. Various

architectural improvements are proposed for future research.

The appendices contain the various code that are used throughout

the research. Appendix A has the Lx code used for the various generators that are

developed for the research. Appendix B contains some MicroRoute tips that will

be beneficial to any designer who uses this router. All of the VHDL code used to

represent the different components is in Appendix C. The functional system

Chapter 1 : Introduction 9

representation implemented with C code, as well as the code used to program the

ROMs, is in Appendix D.

Chapter 2 System Back-
ground

2.0 Quadrature Phase Shift Keying

The digital modulation technique chosen should provide a reliable

performance, a low probability of error and an efficient utilization of the channel

bandwidth. Quadrature phase shift keying (QPSK) has these characteristics

which is why it is one of the most popular of the digital modulation schemes [3].

The inphase and quadrature components (bi, bs> of the QPSK modulated carrier

are given as:

2ni
__(cos-) and

b i = E 4

where E is the symbol energy, T is the symbol duration and i=O,1 ,2 or 3. These bit

streams make step changes at the same time to create a transmitted wave that

has four possible phases: 0, d2, n, and 3d2. This results in four distinct symbols,

00,Ol , IO, and 11, which are represented by the constant envelope carrier:

where f, is the center frequency. At a symbol transition, the QPSK wave can go

10

Chapter 2: System Backwound 11

through a 0, i90 or i180 degree phase change, depending on what the two

consecutive symbols are. A symbol change from 00 to 01 corresponds to a 90

degree change because only a single bit has changed, while a transition from 00

to 11 will cause a 180 degree change. A simplified model of a modulator is shown

in Fig. 2.0.

Fig. 2.0 QPSK modulator

2.1 Staggered Quadrature Phase Shift Keying

Staggered quadrature phase shift keying (SQPSK), also known as

offset QPSK (OQPSK), is a modification of the QPSK modulation scheme. An

SQPSK modulator is shown in Fig. 2.1. The two bit streams bi and b, are

staggered by one bit duration.

Chapter 2: System Background 12

Fig. 2.1 SQPSK Modulator

This insures that only a single bit changes at a time during a symbol duration

causing the SQPSK wave to go through a 0 or a k90 degree phase change.

Because orthogonality is still preserved through the symbol duration, the power

spectral density and the average probability of error are the same for both QPSK

and SQPSK. This is always true unless there are nonlinearities in the channel.

QPSK and SQPSK signals are both characterized by a constant

envelope. This is important because of the amplitude nonlinearities that are

apparent in a satellite channel. When these signals are passed through a filter or

a band limiter, the envelope no longer stays constant. During a 90 degree phase

change, the envelope’s amplitude will only change by 3dB. A 180 degree phase

change will cause the envelope to go through a zero transition. Now the amplitude

nonlinearities can seriously degrade this signal. An advantage that SQPSK has

over QPSK is that it’s envelope will only go through a 3dB change at the most

since the maximum phase change that it can go through is 90 degrees. This is

shown in Fig, 2.2.

Chapter 2: System Backqround 13

Y Y Y T T I v v *
1(

Envelope 3dB
A A - A b A L A * - A

Fig. 2.2 Band Limited QPSK and SQPSK

2.2 Gray Coding

Additive white gautian noise (AWGN) is unwanted power that is

added to the transmitted signal by the channel. AWGN may add just enough

power to cause the transmitted symbol to be incorrectly regenerated. This will

most likely cause a symbol to be mistaken for one of it’s adjacent symbols as

illustrated in Fig. 2.3.

t= I I

Fig. 2.3 a) Transmitted Symbol, b) Effect of Noise on Symbol

Chapter 2: System Backaround 14

For this reason, Gray coding is a very important consideration when doing

modulation. It places the symbols such that adjacent phases only differ by 1 bit.

Now if AWGN causes this type of error, there will only be at most one bit error.

2.3 Demodulation

A basic block diagram of a QPSK demodulator is shown in Fig. 2.4.

The modulated signal is downconverted from IF to baseband by multiplying it by

Sin(ot) and Cos(ot). This also splits the inphase and quadrature components into

two channels (1,Q). The lowpass filter eliminates the unwanted frequency

components and noise that reside outside the desired signal’s bandwidth. The I

and Q channel signals are integrated over one symbol period and a decision is

made as to what logic level the symbol is. For demodulation and detection, phase

recovery and timing recovery are needed. The phase recovery unit uses a

nonlinear transform and an averaging technique to estimate the phase of the

incoming carrier. This is important in QPSWSQPSK demodulation because the

information is carried on the phase of the modulated wave. The timing recovery

unit extracts the symbol clock from the carrier wave, keeping the receiver

synchronized with the transmitter.
\ I Channel

Fig. 2.4 Block Diagram of Demodulator

Chapter 2: System Background 15

2.4 FDMAITDM Link

The satellite link must be governed by an efficient access scheme in

order to adhere to high quality standards. A typical link setup for the QPSK

satellite network is the FDMMDM link.

Frequency division multiple access (FDMA) is used in the uplink and

allows multiple earth terminals to communicate with a single satellite

simultaneously. This is done by dividing the frequency spectrum into multiple

bands and allotting each earth station its own frequency band for which to

transmit. Fig. 2.5 shows four earth terminals transmitting signals in their

respective bands.

Fig. 2.5 FDMA access scheme.

Time division multiplexing (TDM) is a downlink access scheme that

increases the performance of the system and is very easy to implement with

digital modulation. A single satellite will communicate with several earth terminals

Chapter 2: System Background 16

in different time slots as shown in Fig. 2.6.
t 7

The satellite will communicate to the earth terminals in short bursts in order to

avoid keeping any of the earth stations waiting for long periods of time, The

groups of signals will take turns using the channel, allowing the earth terminal to

utilize the entire bandwidth and power resources of the satellite.

2.5 Slot Format

Due to the bursty nature of TDM, there is a need to provide

preamble bits to recover the phase and timing of the transmitted signal..The

preamble is a group of extra bits that will allow the receiver to quickly synchronize

itself with the transmitter. It is composed of carrier recovery (CR), timing recovery

(TR) and unique word (UW) bits that work with various units in the demodulator to

recover the signal correctly. A phase recovery unit will utilize the CR bits in order

to create an initial phase lock. A timing recovery unit uses the TR bits to create an

initial timing of the signal. The unique word detector uses the UW bits to tell when

the data starts and also to resolve a phase ambiguity caused by the phase

Chapter 2: System Backwound 17

recovery unit. Later chapters will go into more details about these signals. The slot

format is shown in Fig. 2.7.

I-Preambled
Slot -

Fig. 2.7 Slot Format.

Chapter 3: Architecture 18

Chapter 3 Architecture
3.0 The Demodulator

The demodulator is made up of many components which work

together to extract the information from the transmitted signal. A block diagram of

the demodulator is shown in Fig. 3.0.

Fig. 3.0 Demodulator Block Diagram

An analog to digital converter (N D) will sample the transmitted signal and feed the

8 input of the demodulator. From there, the signal is fed into a

correlation receiver which downconverts the signal, lowpass filters it and makes a

decision as to which bit is sent. Care is needed in designing the components

because the performance of the demodulator is based on the performance of it’s

components. The architectures of all of the components are explained in detail in

the sections that follow.

Chapter 3: Architecture 19

3.1 Correlation Receiver

The correlation receiver is shown in Fig. 3.1.

Fig. 3.1 Correlation Receiver

It correlates the received signal Si(t) with a known replica Yi(t) and compares it’s

output, after one symbol period, to a threshold value to make a decision as to

what bit is transmitted.

Assume that the input signal Si(t) is being passed through a linear

filter with an impulse response of hj(t). The output of the filter will be:
00

y(t) = S,S~(T) h-(t-T)dT I (3 .o>

If the linear response is set to

hj(t) = Yj(T-t)

Then the resulting filter output will be

Y(t) = Jm s.(?;)Y.(T-t-?;)d-r:
I -m I

If the output is then measured at time t = T, the output becomes

y(T) = Jm ~.(~)Y.(-r:)d-r: (3.3) I -00 I

Since Yj(t) is defined to be zero outside the interval 0 5 t I; T , the output of the

filter becomes

y (TI = Jm S. (T) Y. (T) d-r:
1 -m I (3.4)

which represents exactly what Fig. 3.1 will perform. Therefore, the filter whose

Chapter 3: Architecture 20

impulse response is a time-reversed and delayed version of the signal q(t) is said

to be matched to the signal Si(t) [3], and since Si(t) is a replica of Yj(t), the time-

reversed and delayed version of the signal Yj(t) is said to be matched to the signal

Si (t) -
This matched receiver is optimum for the detection of a pulse in

additive white gaussian noise (AWGN). However, the timing recovery unit used in

this demodulator requires that the baseband signal be reconstructed. Therefore, a

lowpass filter is placed in the correlation receiver, as shown in Fig. 3.2, causing

p t .

the matched filter to become sub-optimum.

b

FSg. 3.2 A QPSWSQPSK Demodulator

Si 0)

A QPSWSQPSK demodulation requires that there be two

Detector
Quadrature Channel outputs

Fig. 3.3 QPSKISQPSK Correlation Receiver

This results in two different channels called the inphase and quadrature channels.

A numerically controlled oscillator is used to provide the Yl(t) and Y2(t) signals,

the Parks/McClellan lowpass filter is used to reconstruct the baseband signal and

Chapter 3: Architecture 21

an integrate and dump unit is used to do the integration over one symbol period

and make the bit decision. These components will be described in the following

sections.

3.1.1 Numerically Controlled Oscillator

Analog oscillators, in a QPSK demodulator, output the signals

cos(2nfCt+8,) and sin(2nfct+8,) to downconvert the modulated signal, where 8e is

a phase estimate from a phase recovery unit. The modulated signal is then

separated into the inphase and quadrature channels. In an effort to replace

analog circuitry with digital circuitry, a numerically controlled oscillator (NCO) has

been developed. The NCO will produce samples of sin(27cfCnT+0,) and

cos(2nfCnT+0,) at each sampling instance. A phase increment of 2nfcT, where T is

the sample period, will be accumulated, as shown by the NCO in Fig. 3.4, in order

to create the argument 2nfcnT where n=0,1, ... is the sample time. The phase

estimate from the PRU will also be added to form the argument 2nfcnT + 8,. The

inphase and quadrature samples are given as:
2ni

I (nT) = ACOS (2nfcnT + - + 8.) COS (2nfcnT + 0)
4 in e

2ni Q (nT) = Acos (2nfcnT + - + 8.) sin (2nfcnT + 0)
4 in e

(3.5)

(3.6)

where 0i, is the initial phase of the carrier. The sin(.) and COS(*) outputs of these

arguments can be stored in a ROM, which is used as a look-up table.

increment

Phase

Fig. 3.4 Numerically Controlled Oscillator

Chapter 3: Architecture 22

3.1.2 Mul~ipli~r

Multipliers are used in many digital signal processing applications.

Many algorithms have been formalized to do multiplication. The BaughNVooley

algorithm [5] is used in high speed, two’s complement multiplication. The main

advantage of this algorithm is that the signs of all the partial product bits are

positive, allowing the product to be formed using array addition techniques. A

modified version of the BaughNVooley algorithm has been developed in [6]. It

saves three adder cells over the original algorithm. A block diagram of this

multiplier is shown in Fig. 3.5.

Fig. 3.5 Multiplier Architecture

3.1.3 Lowpass Filter

The digital lowpass filter (LPF) is used to reconstruct the baseband

signal after the downconversion is done. The inputs to the LPF are given in

equations (3.0) and (3.1). Using a well known trigonometric identity, these

equations can be re-written as:
2ni 2ni

I(nT) = A’COS(- 4 +e. in - e e +A’cos(2n2fcnT+- 4 +e. in + e e) (3 7)

Chapter 3: Architecture 23

(3.8)
2ni

- 0) +Asin(2n2fcnT+- +0. + 0) 4 in e
2ni Q(nT) = Asin(- 4 +'in e

The LPFs are designed to pass all frequency components from 0 to 25MHz.

Therefore, the filters will eliminate the second term in both (3.2) and (3.3) since

thesis components are centered at 2fc = 50MHz. After the filters, the inphase and

quadrature signals will be:

2ni
4

I (nT) = A ~ O S (-- +ein - €le)

2ni
&(nT) = A'sin(-+0. 4 in -ee)

(3.9)

(3.10)

If the initial phase of the carrier is estimated (ei=e,) by the phase recovery unit,

then the signals become

2ni
4

I(nT) = A'cos(-)

2ni
4

Q(nT) = Atsin(-)

(3.11)

(3.12)

which are replicas of the transmitted bit sequences shown in (2.1) and (2.2).

A finite impulse response (FIR) filter is a digital filter whose

response to a unit impulse is finite in duration. FIR filters are characterized by their

constant delay and stability. A typical amplitude response of an FIR approximation

to an ideal lowpass filter is shown in Fig. 3.6

Chapter 3: Architecture 24

FSg. 3.6 Typical FIR Approximation of an Ideal LPF

It is advantageous to minimize 6p, 6c and 6s in order to get the characteristics of

an ideal LPF, where 6p is the amount of ripple in the passband, 6c is the transition

distance at cutoff, and 6s is the amount of ripple in the stopband. The Chebyshev

approximation is one way to do this. It’s main goal is to minimize the maximum

error of the output of the filter. A Parks and McClellan algorithm uses the

Chebyshev approach to generated the filter coefficients.

Digital filtering for FIR filters can be described by the equation:

(3.13)

where h(k) are the coefficients of the filter, k=0,1, ..., N-1, and x(n) and y(n) are

respectively the input and output of the filter. The values of the filter coefficients

determine the filter’s characteristics. Equation (3.1 3) shows that filtering is simply

the convolution of the input signal with the filter’s impulse response in the time

domain. This filtering operation can also be shown in the z-domain which is

analogous to the frequency domain. Convolution in the time domain is equal to

multiplication in the frequency domain, so the filtering operation can be done as

follows:

Y(z> = H(z) X(Z) (3.1 4)

where H(z) is the z-transform of the filter’s impulse respoonse, and X(z) and Y (z)

are the z-transforms of the input sequence and output sequence of the filter.

Chapter 3: Architecture 25

The transfer function for the Parks/McClellan FIR filter is [2]:

H(z) = 0.5 + 0.31 6(z1 +z-') - 0.1 (Z 3 3 +z-) + 0.055(~~+~-~) - O.O34(Z 7 +Z -7) (3.1 5)

The filter coefficients are generated using NASA's FDAS program. Substituting

z=doT into (3.1 0) gives the amplitude response for the LPF shown in Fig. 3.7.

Fig. 3.7 Amplitude Response of the LPF

The filter structure that will implement equation (3.1 4) is shown in Fig. 3.8.

Fig. 3.8 LPF Architecture

This filter is designed with powers of two coefficients [7,8], so that there is no need

Chapter 3: Architecture 26

for area consuming multipliers. The multiplication can simply be done by shifts

and add operations.

3.1.4 Integrate and Dump Unit

The integrate and dump unit (IDU) is the final stage of the

correlation receiver. It’s purpose is to integrate the input signal over one symbol

period and make a decision as to what bit is sent. Since the rate of sampling is 4

samples per symbol, the IDU will accumulate four samples which is the same as

integrating over a symbol period. This is demonstrated in the following equation:

(3.16) 1
gn+3 = 4 (fn +3 + fn+2 + fn+ 1 + fn)

where g, is the output of the IDU and f, is the input samples to the accumulator. If

the output of the IDU is positive, then the bit that is sent is assumed to be a logic 1

bit. If the output of the IDU is negative, then the bit that is sent is assumed to be a

logic o bit.

To show that the IDU is a lowpass filter, the z-transform is performed

on (3.16). Assuming that all initial conditions are zero, the z-transform of (3.16) is:

(3.17) z 3 G (z) = 3(z3F(z) +z2F(z) +zF(z) +F(z))

The transfer function s
3 2 z + z + z + l = Htz) = G (2)

F (z) 4z3
(3.18)

If z=doT is substituted into (3.18), where T is the sampling period, the filter’s

amplitude response is found and is shown in Fig. 3.9.

Chapter 3: Architecture 27

Fig. 3.9 Amplitude Response of the IDU

The IDU is shown in Fig. 3.10. The first latch is triggered by the 1OOMHz chip

clock and the second latch is triggered by the symbol clock when it is time to make

the decision s to what bit has been transmitted.

Fig. 3.1 0 IDU Representation

3.2 Phase Recovery Unit

The phase difference between bursts is proportional to the fame

T
time:

(3.19)

Chapter 3: Architecture 28

where AFrame is the phase difference between bursts, Af is the frequency

uncertainty, TFrame is the frame period and Tsym is the symbol period. If stable

frequency sources are used then the Af will be small making Af Tsym <c 1. But the

frame time can be very long compared to the symbol time making TFrame / Tsym

>> 1, making the phase difference between bursts significant. Sine Af is a uniform

random variable, it makes the initial phase offset a uniform random variable in the

range from [-IT, n] [9]. Therefore, the initial phase of the carrier must be estimated.

A phase recovery unit (PRU) for burst application using M-ary PSK

has been proposed by Viterbi and Viterbi [SI. It is characterized by a fast

acquisition time and is easily implemented with digital hardware. The PRU

estimates the phase at the midpoint of an estimation interval which is composed

of 2N+1 symbols, where N is the number of symbols before and after the symbol

whose phase is being estimated. Initially the PRU takes 2N+1 symbols before it

estimates the phase. After the first estimation interval, it needs only N more

symbols to estimate the next phase because it re-uses the previous N symbols

used in the previous estimation interval. This overlapping of the estimation

intervals makes all estimates unbiased except for the first and the last estimate.

An M-ary PSK wave modulated with a burst technique is

represented as:

(3.20)

where E is the symbol energy, Tsym is the symbol period, M is the number of

unique symbols, i=O,l ,..,M-1 , f, is the carrier frequency and Bin is the initial phase

of the carrier. First the carrier is input to a correlation receiver shown in Fig. 3.1 1.

Chapter 3: Architecture 29

Fig. 3.11 Front End of the PRU

The inphase channel symbols will be obtained by multiplying the QPSK carrier by

cos(2nfct) and integrating over one symbol duration:

2xi
M in

= JAcos(-+0. 2ni)d t+
cos(2n2fct+-+f3.)dt

M In

2ni
M in = cos (- + 0.)

Similarly, the quadrature channel symbols will be obtained by:

T 2ni
= lo cos (2nfct + -- + 0.) sin (2xfct) dt

Qsym M in

2ni
M in =sin(-+e.

(3.21)

(3.22)

The next section of the PRU extracts the initial phase offset from the

carrier. It views the two channels outputs in complex notation and does a

rectangular to polar transformation on the quantity:

lsym + jQsym => P 4'

Chapter 3: Architecture 30

where

(3.23)

(3.24)

The Viterbi algorithm requires that a non-linear transformation, T[1, be performed

on the magnitude p. According to Andrew and Audrey Viterbi, the non-linear

transform should be:

T[Pl = Pk

where k = 0,2, ... M and even. For k=O, the performance of the PRU is best at E d

No > 6dB. For k = 2, the performance is best at E d N , e OdB. Since k = 0 shows

the best performance over a wider range of EdN,, k is chosen to be 0 for this

design. The phase 0 must also be multiplied by M. The reason for this is

demonstrated in the following equation:

(3.25)
This gets rid of all symbol phase information and leaves only the initial phase

offset information. The magnitude and phase are then transformed back into

rectangular coordinates:

podM% = COS(M0in) + jsin(MOin) (3.26)

This complex notation is then split back into two signals:

Isnew = COS(M0in) and

Qsnew = Sin(MOin)

where Isnew and Qsnew are the new symbols in the inphase and quadrature

channels respectively after the transformations. These symbols are then fed into

an averager where they will be averaged over the estimation interval of 2 N + 1

sym bok:

Chapter 3: Architecture 31

4 2N
I E 'snewi 2N+1

i - 0
- -

4 2N
I t: Qsnewi

i = O
Qav - m -

(3.27)

(3.28)

At this point the initial phase can be estimated. Since the phase is multiplied by M,

the phase estimate will have to be divided by M:

1
= MMein = e in (3.29)

Assuming that Isnew and QSnew remain approximately the same throughout the

estimation interval. Since the atan() function tun result from [-n,n], the 1/M atan()

will return a result from [-dM,dM]. This M-fold phase ambiguity needs to be taken

care of since the incoming signal can be received with an initial phase in the range

of [-n,n]. A unique word detector is used to resolve this ambiguity and will be

described n a later section.

For this demodulator, M=4 since there are 4 unique symbols in both

the QPSWSQPSK modulation schemes. The number of symbols before and after

the symbol whose phase is to be estimated is N=8. This corresponds with the

number of symbols in [9] and provides adequate results. A brief summary of the

algorithm is given below:

1 .) Sum four consecutive samples (one symbol) in each of the
channels to get I, and Q,.

2.) Do a rectangular to polar transformation to obtain the form:
Is+ jQs - re f

3.) Multiply the phase by four and do a nonlinear transformation
T[] on the magnitude: T[p] = po = 1, and 4' = 44

Chapter 3: Architecture 32

4.) Do a rectangular to polar transformation to get the new I and Q
channel data.

0 40
P e *',new + jQsnew

5.) Average Isnew and Qsnew samples over 17 symbols to get I,
and Q,

6.) The phase estimate will be:

Steps 2-4 can be implemented by storing the output values into a ROM and using

it as a look-up table. Step 6 can also be implemented with a separate ROM. A

block diagram of the PRU is shown in Fig. 3.12.

Fig. 3.12 PRU Block Diagram

3.3 Timing Recovery Unit

The timing recovery unit (TRU) [2] is needed to keep the receiver

and transmitter synchronized in time. The symbol clock recovery takes place after

the initial phase has been estimated. The clock is extracted by processing

demodulated baseband waveforms. This is why the lowpass filters are needed in

the correlation receivers. The TRU will use the TR bits in the preamble in order to

initially lock on the timing. the number of TR symbols chosen for this design is 20

Chapter 3: Architecture 33

symbols of alternating logic bits. This TRU will reset the symbol clock after it has

seen 3 consecutive alternating symbols.

The TRU uses the sign bits from the demodulated baseband signal

to check for zero crossings such as those shown in Fig. 3.1 3.a.

Fig. 3.13 Timing Recovery Unit

The number of sign bits, m, that can be used in the detection of the zero crossings

are 2 5 m 2 2R, where R is the number of samples per symbol that represent the

signal. A larger value of m will result in a more accurate estimation of the zero

crossing.

The first stage of the TRU, shown in Fig. 3.13.b. searches for zero

crossings in the demodulated baseband signal. The sign bits of the demodulated

signal are shifted into the shift registers whose outputs are used as inputs to the

symbol transition detector(STD). The STD will output a transition signal when the

first m/2 shift register bits are logic 1 and the last m/2 shift register bits are all logic

0 or when the first m/2 shift register bits are logic 0 and the last m/2 shift register

bits are all logic 1 bits. This is demonstrated by the equation:
m m m --I

2
- - 1 --I
2 2

m - -1
2

(3.30) -
t n + m - i - n Sn+m- l - i n % + i + n ’n+m- l - i T1 Sn+i

i = O L O i - 0 i=O

Chapter 3: Architecture 34

where tn is the zero transition sequence, Sn is the sign bits that are shifted through

the shift registers, m is the number of sign bits used to detect the transition and

n=0,1, ... is the sample time. For this design, the number of sign bits used to

determine the zero crossing is m=6. Equation 3.30 gives:

tn+5 = Sn+5Sn+4Sn+3Sn+2Sn+1 Sn + Sn+5Sn+4Sn+3Sn+2Sn+lSn
_ - - - - -

(3.31)

Equation 3.31 states that the transition will be a logic 1 when the first three sign

bits are a logic 1 nd the next three sign bits are a logic 0, or the first three sign bits

are a logic 0 and the last three sign bits are a logic 1.

The channel transition detector (CTD), shown in Fig. 3 . 1 3 . ~ ~

searches for a number of consecutive transitions before the symbol clock. This is

to safeguard against any false transitions cased b noise. This operation is shown

by:

Cn+(r-l)R = tn tn+R tn+2R tn+(r-l)R (3.32)

where Cn is the channel transition sequence, tn is the zero crossing sequence

from the STD, R is the number of samples per symbol and r is the umber of

consecutive transitions that s required to reset the symbol clock where r 2 1. The

CTD for this design implements (3.32) with r=3 and R=4 which means that the

CTD will wait for 3 consecutive zero crossings before it resets the symbol clock.

This leads to (3.33).

Cn+8 = tn tn+4 h+8 (3.33)

The symbol clock unit is shown in Fig 3.13d. The symbol clock will

point to the first sample of the symbol as the counter counts 0.

Chapter 3: Architecture 35

Desired Symbol Clock
i t t t

+ + $ $
Channel Transition Sequence

Fig. 3.14 Delaying of the Channel TransRions

The CTD will output a zero detection on the third sample of the symbol. This is

illustrated in Fig. 3.14. For this reason, the CTD’s output needs to be delayed by 2

sample time units so that it will rest the clock to 0 at the time of the first sample of

the symbol.

3.4 Unique Word Detection

A unique word detector (UWD) [IO] utilizes the UW bits in the

preamble to tell when the data starts. The bits at the output of the inphase and

quadrature correlation receivers are fed into the I channel UWD and Q channel

UWD respectively. Since the QPSK signal can be received with a phase offset

anywhere in the range of [-.n,n], the I channel bits or the Q channel bits or both

may be inverted. For this reason it is desired to use a matched receiver that will

have a minimum output when the bits in the shift registers matched’ the ones

stored in the UW memory and a maximum when the bits in the shift registers re

the inverse of the ones stored in the UW memory. The data starts when the UWD

reaches either a maximum or a minimum. Fig. 3.15 shows both I channel and Q

channel UWDs.

The Unique word (UW) was chosen as a random sequence of 15

which is within the bits and determined to have a false alarm probability of

target BER of the satellite. More discussion of the UW is in section 5.6.

Chapter 3: Architecture 36

A
~ I

Q Data
From Q-Channel ID1 1 0 0 1 1 0 1 1 0

Unique Word Detector k
Fig. 3.15 Unique Word Detectors

The characteristics of the UWD lead to an easy way to resolve the

phase ambiguity of the PRU. The outputs Idiff and QdiV are the differences

between the shift register bits and the unique word bits in the I and Q channel

respectively. These values are obtained by XORing the shift register bits with the

unique word bits and adding all of the XOR outputs. The quadrant decision unit

(QDU) compares Idiff and Qdift to a threshold value and maps the signal into the

region between [-d4,d4] as shown in Table 2.

Chapter 3: Architecture 37

Idiff <= 5

Table 2: Quadrant Decision.

I Condition I Qlff <= 5 1 Q&ff > 5
-

I, =.Ii, Iout = Qin
Qout = Qin Qout = Iin

-
Idff > 5

~

IoLlt = QJin
Qout = Iin

lout = I&
Qout = Qin

As an example, let Idiff =O and Qdiff = 9, which means that the inphase bits re

received correctly and the quadrature bits are the inverted version of the correct

bits. If the threshold value is 5, the QDU maps the inverted data from the Q

channel IDU into lout and the data from the I channel IDU into Qout. This in effect

maps the signals from the quadrant that the signals are received in to the

quadrant between [-.n/4,n/4], which is now in the range of the PRU.

Chapter 4 Generators
4.0 Design Considerations

From each of the architectures in the preceding chapter, a group of

commonly used components can be extracted. These components are the binary

adder, multiplier, read-only memory and serial access memory. Since many

different sizes of these components are used, component generators are

developed. The following sections illustrate some of the design considerations

used when creating the generators and some background information on the

generators developed for this project. For further information, see 11 11.

4.1 Area and Performance

Area is a very important design consideration when creating a VLSl

system. The cost of the system is proportional to the area of the system, so it is

advantageous to make the designs as small as possible. It is best to design a

component with the dimensions of a square. Any other shape will result in costly

en the components as shown in Fig. 4.0.

Incorrect
Correct

Fig. 4.0 Area Considerations

38

Chapter 4: Generators 39

Minimization of the number of I/O pin connections to a component is a necessity.

Smaller components should only have one power, ground and clock connection.

This will minimize the amount of wiring that is needed to connect the component

to the system and therefore, the area of the channels will be smaller. A template

that should be used for all components is shown in Fig. 4.1 .a. This will result in an

efficient layout as shown in Fig. 4.1 .b.

+, Vdd

OUTPUTS
GND

INPUTS
I I I I

I
I w 1

GND
a. b.

Fig. 4.q Component Ternpiate

Performance is another major consideration when designing a VLSl

system. The performance of the system heavily depends on the area of the

system. Small area leads to smaller capacitance and faster, higher performing

circuits. Performance is also based on how much power the system dissipates.

Proper sizing of the transistors can alleviate the static power dissipation and

minimize the dynamic power dissipation in the CMOS technology.

4.2 Hierarchy

Hierarchy is the process of breaking down a system into smaller

components in order to create a less complex design. Instead of trying to design a

large system all at once, it is easier to design the smaller sub-components first

Chapter 4: Generators 40

and then put these components together to create the larger ones. The

demodulator is divided into seven main components. The larger of these

components are divided even further.

4.3 Regularity

Regularity decreases the complexity of a system by dividing the

hierarchy into a set of similar building blocks. In other words, it uses specific

designs in a number of places, which is where the generators play their important

part. Using the same component more than once allows for quick designs as well

as less masks to be produced, which reduces the cost of the system.

4.4 Modularity

The hierarchical designs should interface with one another cleanly

and precisely which is why modularity is of great importance to a system. The

interconnects between two components should be at the same coordinates and

on the same level of metal in order to avoid the addition of costly contacts and

space. When all of the components are connected together, the dimensions

should be that of a square in order to obtain a higher level of integration.

Modularity can also be expressed in the timing among the components. It is

necessary that the operations between two connected components be precisely

timed or this will decrease the performance of the system.

4.5 Generators

The layout of regular structures such as adders, ROMs, and

multipliers may be synthesized by software generators. These programs take a

Chapter 4: Generators 41

number of parameters as input and automatically create a custom physical layout.

Efficient algorithms are used to translate the input parameters into the output

descriptions. The key reasons for the development of generators is that they

assure a shorter design cycle and allow for more exploration of different design

styles since they can be generated quickly and easily.

The fixed cell approach has been used in the development of the

generators for this research. This means that all of the cells are of fixed size and

can not be changed. A cell library can be developed which contains many

different sizes of these cells. The generator can be designed to call up different

cells for different input parameters. All cells are made arrayable, which means that

when the cells are appended together, the proper terminals will be connected.

Mentor Graphics Led is the main building block used in the

development of the generators. All cells in the cell library are created using Led. A

programming language called Lx is a procedural interface to the L database and

Led graphics editor. Lx provides access to the information within the L database

and provides interaction with the Led graphics editor. This allows Lx to accept an

input from the Led command prompt, call up the necessary cells from the cell

library, and place the cells according to the algorithm. Since Lx-can read from the

database, it can be used to wire components, place contacts where needed and

place top level connectors automatically.

4.6 Adder Generator

Addition is the fundamental operation in digital systems. It is used in

adders, subtracters, multipliers and many other applications. Of the many different

types of adder cells, the transmission gate adder is chosen for this research. This

cell is only made up of 24 transistors which make the area and performance very

Chapter 4: Generators 42

attractive. The transmission gate adder is shown in Fig. 4.2.

Fig. 4.2 Transmission Gate Adder Cell

The transmission gate adder cell can be used to add two I-bit

numbers. In order to create an n-bit adder, this cell can be cascaded n times to

form a ripple carry adder shown in Fig. 4.3. Instead of appending the adder cells

into one long adder, the generator folds the adder in half in order to conserve on

area.

Fig. 4.3 N-bit Adder

The demodulator is composed of many different sizes of adders. An adder

generator is developed in order to cut down on the design time of each of these

Chapter 4: Generators 43

adders.

4.6.1 Basic Cells

There are four different cells that are used by the adder generator.

All of these cells are similar to the one shown in Fig. 4.2. There are two main

design concerns when creating this cell. First, the connectivity between the cells

must be very clean and compact. The area is then minimized and the adder is as

compact as possible. Second is to design the cell such that the SUM and CARRY

signals propagate at the same time. The output of each stage depends on both

the SUM and the CARRY of the preceding stage. The critical path is the CARRY

signal, so it is important to minimize this delay such that it propagates at the same

time as the SUM signal.

The simulation of the adder cell is done in the adept mode in order

to generate the true characteristics of the adder. Fig. 4.4 shows that the SUM and

the CARRY signals of the loaded adder cell propagate at the same time as

anticipated.

..............................

...............................

...

II I : 1 : : : I : : : I : : : 1 : : : ~ : : : ! : : ; : : : : ! : : ; ! : : : ! : : : ! : : : ! : : : I I

Fig. 4.4 Simulation of the Basic Cell

Chapter 4: Generators 44

4.6.2 Algorlthm

The adder generator creates the n-bit adder according to the flow

chart in Fig. 4.5. The size and name of the adder are input parameters supplied by

the user. The input parameters basically specify the organization of the adder. The

algorithm places the top adder cells followed by the bottom adder cells and the

layout is created. The automatic wiring and top level terminals are then placed.

This generator places a constraint on the size of the adder. The user must specify

only even sized adders such as an 8-bit or a 6-bit adder. This greatly reduces the

complexity of the generator as well as decreases the wasted space caused by an

odd number of adder cells.

Input Specifications :
Size, name

\ J

Organization:
Rows = 2

I

Output: Layout of adder

I

i
Wire and add
top level
terminals

terminals

I

Create the layout

'Append bottom ! Cells

\

Fig. 4.5 Adder Generator Algorithm

Chapter 4: Generators 45

4.6.3 Output

The generator output of an ,8-bit adder is shown in Fig. 4.6. It is a

folded architecture with inputs on both sides and outputs on one side.

.............................. r .

4 Inputs

Fig. 4.6 &bit Ripple Carry Adder

The area'of this adder is 140 x 50 pm2, and the worst case delay is approximately

6 ns. This is well in the range of the 10 ns clock period. Fig. 4.7 shows an adept

simulation of the 8-bit adder where 3, and bin are the inputs and sout is the

output.
Probe Display Window 1: timescale = 8.20115
T i m e = 31 87n5

1E30 i 1000 0000 i000

01101001 0000 1000

100 11000

0 110105 1

.. . . ,

0 1000004 0000l0000 10000000 1

+ ! ! ! ! : : : : : : ! : ! : : : : : : . : : : : ! : : : : . : : : : : ! : ' + : : : : ' : : : : ::::::::::-H++H4+

26,Q 27.0 28.0 29 0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38 0 39.0 40.0
01

a i n

b i n

sou1

-
Fig. 4.7 Simulation of 8 Bit Adder

Chapter 4: Generators 46

4.7 Multiplier Generator

Binary multiplication is based on a technique of successive

additions and shifts in which each addition is conditional on one of the multiplier

bits. This allows the multipliers to be made with adder cells. The adder cell used

for the multiplier is the same as the adder cell used in the adder generator with a

few modifications. The BaughANooley multiplication algorithm is used[7]. This

algorithm is designed for high speed, two's complement multiplication. The main

advantage of this algorithm is that the signs of all the partial product bits are

positive, allowing the product to be formed using array addition techniques. A

modified version of the BaughNVooley algorithm is used which saves three adder

cells over the original algorithm [8].

4.7.1 Basic Cells

The multiplier is designed with the same basic cell as the adder,

except for one simple modification. There is an AND gate added to the layout of

the adder cell. The multiplier cell block diagram is shown in Fig. 4.8.

Pi

Ci+l PI+

Fig. 4.8 Multiplier Cell Block Diagram

The four basic cells are shown in Fig. 4.9. The AND gate is used to do the first row

Chapter 4: Generators 47

of multiplications. After this stage, the shift and add technique is carried out by the

multiplier cells. The pipelining stage is composed of serial access memory cells.

The final stage is made up of adder cells without any AND gates.

AND gate

Pipeline stage

e

Final Stage Multiplier Cell

Fig. 4.9 Multiplier Basic Cells

4.7.2 Algorithms

The flow chart in Fig. 4.10 illustrates the algorithm of the multiplier

generator. The inputs specify the organization of the cells. First the algorithm

places the AND gates, then the multiplier cells. The multiplier is pipelined so the

pipeline stage is placed between the multiplier cells. The final stage of adders is

then placed and the multiplier is generated.

Chapter 4: Generators 48

Input Specifications:
Size, name

Organization:
Rows = size + 2

i-

terminals

I

Append
pipelining cells

I

i
Create the layout

I I

S ize/2+ 1 i-0
Append

multiplier cells
\

Fig. 4.1 0 Flow Chart for Multiplier

Chapter 4: Generators 49

4.7.3 Output

The generator output of an 8-bit by 8-bit multiplier is shown in Fig.

4.11. There is only one VDD terminal and one GND terminal, on the MET3 level,

needed to be connected to this component. All of the outputs come from one at

the MET2 level. The inputs are on both sides at the MET1 level.

Fig. 4.11 Output of Multiplier Generator

The simulation in adept mode of all of these transistors is beyond the capabilities

of the simulator Lsim. So another means is used to simulate the multiplier. The

delay information from each of the layout cells is extracted and saved in a file.

Each cell is very accurately represented in VHDL and the delay information is

read from the file as a look up table. The VHDL cells are then placed together and

simulated. The results showed that the worst case delay for an 8 x 8 bit multiplier

is about 12 ns. The multiplier had to be pipelined because the clock period is only

Chapter 4: Generators 50

10 ns.

4.8 Read Only Memory

The read-only memory (ROM) is a static memory structure. The

memory is programmed in during fabrication and can never be changed

afterwards. When algorithms require many mathematical computations, ROMs

can be used as look-up tables in order to increase the computing capability of the

system. The ROM will give a faster output and reduce the system complexity at

the cost of more area used.

Since it would be impossible to design a large ROM by hand in an efficient

amount of time, a ROM generator is developed. This generator is composed of

three smaller generators: the row decoder generator, the ROM array generator,

and the bus generator.

4.8.1 Organization and Operation

The organization of the ROM is shown in Fig. 4.1 2.

Rom Array

Column Decoders
and Sense Amps

I

Fig. 4.12 Organization of the ROM

Chapter 4: Generators 51

The inputs are fed through the row and column buffers and into the row and

column decoders. Then the decoders choose which location of memory is to

propagate to the output.

For proper operation of the ROMs, two clocks are needed. The operation of the

ROM is as follows:
{I .)The pull up circuits pre-charge the bit lines and the row decoders \

pre-discharge the word lines.

2.)Depending on the input, the row decoder will conditionally charge a

word line and the column decoder will choose a column. The bit line

will be discharged if a transistor has been selected, or it will remain

charged.

3.)The sense amp is enabled.

4.)The data is latched.

The clocking scheme is illustrated in Fig. 4.13.

Pre-discharge Pre-discharge 7

1 Row Decoder p z z q pzi-
I - I

Pre-charge Pre-charge
Pull Up Circuit -

$1 -1 Evaluate rl Evaluate
I I I

Pre-discharge Sense Pre-discharge Sense

4)2 1
Latch 6 rl ~-i

Sense Amp

Hold Change Hold Change

1

Fig. 4.13 Rom Clocking Scheme

Chapter 4: Generators 52

4.9 Row Decoder Generator

A row decoder is used to select one word line out of 2” word lines,

where n is the number of inputs to the row decoder. The row decoder designed for

this research is an AND based tree decoder. This type of decoder is very regular

and very easily generated. Fig. 4.1 4 shows a diagram of the tree decoder.

4

Fig. 4.1 4 AND based Tree Decoder

It is based on a dynamic tree decoder where the output is first pre-discharged and

then conditionally charged. A modification has been made to the dynamic decoder

in order to make it static. The p-transistor PI has been introduced to the circuit for

this purpose. When the word line is discharged, the p-transistor turns on and

guarantees that the input to the inverter will remain high. This is very important

when row decoding since any leakage current could cause an incorrect word line

to go high. When the word line is selected, the output of the inverter will go high

and the p-transistor will turn off. The row decoder pre-discharges the word line so

that no word in the memory is selected. Since the word line is low, the p-transistor

turns on and keeps the input of the inverter high. Inputs A, B and C conditionally

turn the n-transistors on and discharge the input of the inverter. The word line

goes high selecting a row of memory and turning off the p-transistor.

4.9.1 Row Decoder Basic Cells

The basic cells for the row decoder are shown in Fig. 4.15. The

Chapter 4: Generators 53

transistors are placed such that each row has a different address. Therefore,

there is a need for a cell with a transistor and a cell with no transistor. The pre-

charge stage is the last cell appended to a row. Each row needs to be pre-

charged which will pre-discharge the word lines.

Transistor NO Transistor Re-Charge Stage

Fig. 4.15 Row Decoder Basic Cells

4.9.2 Algorithm for the Row Decoder

The algorithm for the row decoder is shown in Fig. 4.16. The

address table is automatically generated at the beginning of the program. It

provides address information for each of the rows and tells when to append a

transistor cell or a cell with no transistor. The pre-charge circuit is appended at the

end of each of the rows.

Chapter 4: Generators 54

Address Table:
00 ...oo

11 ... 11

oo... 01 I
utput: Row Decoder Layout

4.9.3 output

Input Parameters:
rows, columns

\- 1

Fig. 4.16 Row Decoder Algorithm

The output of the row decoder is shown in Fig. 4.1 7.

Fig. 4.17 Decoder Generator Output

The simulation of the row decoder with the output buffer stage is

Chapter 4: Generators 55

shown in Fig. 4.18. This decoder has 16 rows to choose from. To show the

functionality of the row decoder, each of the rows is selected one after the other.

...

......................

.................... ...

............................

.....................................

.........................
..

..

..
...

...
~ : : : : : : : : M : : : : : I : : : I : : : : : : : : : : : I

6 18 30 42 54 66 78 90 102 114 126 138 15e) 162

Fig. 4.18 Simulation of the Row Decoder WRh Buffered Output

4.10 ROM Memory Array

The ROM array is composed of pre-charge circuitry, memory cells

and pass transistors. The pre-charge circuitry, shown in Fig. 4.1 9, is made up of

load transistors and pulsing transistors. During pre-charge, the pulsing transistors

and the load transistors charge up the bit lines. During the evaluation period, the

pulsed transistors are turned off to save on power dissipation, but the load

transistors are still on. The load transistors are very weak and allow only a small

amount of current to flow. This is to defeat any leakage current that may be

discharging the bit lines. The current through the load transistor is also small

enough such that the ROM array transistors can easily pull down the bit line. The

load transistors will not allow the ROM array transistors to pull the bit line all of the

way down to OV, which will speed up the pre-charge operation. The bit lines are

only charged up to about 3.4V because the pull up transistors are all n-transistors.

Chapter 4: Generators 56

An n-transistor pre-charge circuit saves area over a p-transistor pre-charge circuit

and the pass transistors at the end of the ROM array only allow 3.4V through

anyhow, so there is no degradation in performance.

in Load Transistors

I Bit Lines I

Fig. 4.1 9 Pre-Charge Circuit

The ROM array is composed of the memory transistors. Each bit of

memory requires one n-transistor. If a logic 1 is needed to be programmed into the

memory, no transistor is placed on the bit line. When the word line is selected,

then there is no transistor to discharge the bit line, and it will remain logic 1. If a

logic 0 is needed to be programmed into memory, then a transistor from the bit

line to ground is placed in the array. Now when this transistor is selected by the

word line, it will discharge the bit line to a logic 0. The array is designed to be as

compact as possible. There are many design techniques used to increase the

performance of the ROM array. Contacts are shared as much as possible to save

on area and bit line capacitance. A technique called strapping is done every eight

transistors on the polysilicon word line and on the n-diffusion ground line.

Strapping is done by placing a low resistance metal line over the top of a high

resistance line and connecting these two lines every eight to sixteen transistors.

This places a large resistance in parallel with a low resistance and the equivalent

resistance is smaller than the smallest resistance. The ROM array schematic is

shown in Fig. 4.20.

Chapter 4: Generators 57

Bit Lines

Word
Select GND

To Sense Amps

Fig. 4.20 ROM Array

4.10.1 Basic Cells

I

The basic Cells for the ROM memory array are shown in Fig. 4.21.

The pre-charge circuitry is shown with the load and pulsing transistors.

Load Transistors

Pulsing Transistors

Fig. 4.21 Pre-Charge Cells

The cells in Fig. 4.22. are the memory cells. These are divided into two groups:

top cells and bottom cells. The top cells are placed in the odd rows and the bottom

cells are placed in the even rows. There are three different types of top cells. The

cell with no transistor is used when a logic 1 is programmed into memory. There

are two types of cells with no transistor. The one with a contact is placed when

there is a transistor above it. These two transistors share the contact which saves

on area. The one with no contact will be placed when there is no contact above it.

Chapter 4: Generators 58

Top Cells

No Transistor

Bottom Cells

No Transistor

No Transistor Top Transistor
With Contact

Transistor

Fig. 4.22 ROM Array Basic Cells

The pass transistor, shown in Fig. 4.23, is used in the final stage of

the memory array. These transistors are placed at the end of each of the bit lines

to act as a switch. The column decoder selects a group of pass transistors,

enabling the logic level on the bit lines to be sensed by the sense amps.

Fig. 4.23 Pass Transistor

Chapter 4: Generators 59

4.10.2 Algorithm

The ROM array generator first appends the pre-charge transistors.

Next it starts placing the memory transistors according to the data file. The data

file does not have to be in any particular format. It can be contained in a text file in

columns or in a single array of numbers. The input specifications will tell the ROM

array generator how many bits to read from the file. After the memory transistors

are all in place, the pass transistors are then appended. The layout is then

created. The algorithm is illustrated in Fig. 4.24.

Input Parameters:

Append Load Trans.
and Pre-Charge

Trans.

utput: ROM Array Layo

Yes

Append Pass Trans.
For x <=
columns

Append Load Trans.

Fig. 4.24 ROM Array Algorithm

Chapter 4: Generators 60

4.10.3 Output

An example ROM is shown in Fig. 4.25. The row decoder, row

buffer, pull up circuit and ROM array are all generated and automatically placed

together. The input buffers, bus, column decoder and sense amps are all placed

by hand.

Fig. 4.25 ROM Array

4.11 ROM Generator

The generators that have been developed thus far produce pieces

of a ROM. Another generator is needed to integrate these pieces into one unit.

This is the ROM generator. The ROM generator developed for this research is

only a partial ROM generator. It places the row decoder, the row buffers and the

ROM array circuits and automatically connects these units together. The input

Chapter 4: Generators 61

buffers and the bus are placed in the ROM cell by hand.

4.11.1 Output

Fig. 4.26 shows an example of a 16 x 32 bit ROM. This particular

ROM is only for demonstration purposes and is not used in the research.

Pull-up

Rom Array

Bus

Column Dec.
and Sense
Amps

Fig. 4.26 Output of the ROM Array Generator

4.1 1.2 Bus Generator

In a memory system composed of n-bit words, it is advantageous to

use only n sense amps. Therefore, when the memory is split up into multiple

blocks, it is necessary to connect all of the first bits of the words to one bus, all of

the second bits of the words to a second bus, and all of the nth bits of the words to

an nth bus. The n busses can then be connected to the n sense amps. The bus

generator is developed to do such a task.

Chapter 4: Generators 62

4.11.3 Basic Cells

A 10-bit bus, shown in Fig. 4.27, will be at the output of each block.

Fig. 4.27 1O-bit Bus

The sense amp, shown in Fig. 4.28, has a pre-discharge feature that

discharges the sense amp capacitance before it begins sensing. Now when a

logic 0 is programmed into memory, the ROM array transistor only needs to pull

down the charge on the bit line and not the charge on the bit line and the sense

amp. This will speed up the sensing operation. When a logic 1 is programmed into

the memory, the output of inverter I1 will go low, turning on the p-transistor which

will aid in charging the input of 12, increasing the speed of the sensing operation.

Bit line 7
Pass

I
I1 cO' I2 13

Fig. 4.28 Sense Amp

Chapter 4: Generators 63

The column decoder is an array of static AND gates set up as a tree

decoder. Each AND gate selects a different block of memory. These are placed in

series with the sense amps to save area. A column decoder cell is shown in Fig.

4.29.

Fig. 4.29 Static Column Decoder

4.11.4 Algorithm

The algorithm for the bus generator is illustrated in Fig. 4.30.

Append column decoder

t: Bus 'th Column (%%%a- andyense Amps 1
Fig. 4.30 Bus Generator Flow Chart

Chapter 4: Generators 64

4.11.5 Output

An example output of the bus generator is shown in Fig. 4.31.

CD1 SA1 CD2 SA2 CD3 SA3 a * *

Fig. 4.31 Bus Generator Output

CDn SAn

4.12 Decoder Input Buffers

The decoder input buffers in Fig. 4.32 are clocked [12]. Until 4 goes

low, the outputs AA and it’s compliment will remain low. This will allow all but one

row of the row decoder and column decoder transistors to turn on. This leaves no

path to ground during the pre-discharge phase and the outputs will be unaltered.

When the pre-discharge phase is over, $ goes low and the only transistors that

are needed to be turned on are the last stage.

A
Row /-- AA

L - B
B B B

Fig. 4.32 Decoder Buffers

Chapter 4: Generators 65

4.13 Serial Memory Generator

A serial access memory (SAM) is used in every component of the

demodulator system. It is primarily used as a pipelining unit.

4.13.1 Basic Cells

The serial access memory, shown in Fig. 4.33, is a dynamic register

with a few modifications. The input has an AND gate for resetting the circuit. Also,

the register requires only one clock signal. This is done by having the first stage

latched with an n-transistor and the second stage latched with a p-transistor.

Transistor P1 is placed in the circuit in order to increase it’s speed. The n-

transistor can not pass a true logic 1, so the P1 transistor will sense the output of

the inverter. When the output goes below the threshold voltage of P1, it will turn

on and bring the input to a true logic 1. Transistor N1 serves a similar purpose.

Since the p-transistor can not pass a true logic 0, the N1 transistor senses the

output of the second stage inverter and brings the input to a true logic 0.

Data -Ah$---, Reset in DataOut

Fig. 4.33 SAM cell

Chapter 4: Generators 66

4.13.2 Algorithm

The input parameters for the SAM generator are the number of rows

and columns of the SAM needed. This will specify the organization of the cell and

the algorithm has to append the basic cells to get such an organization. Fig. 4.34

illustrates the algorithm used in the SAM generator.

\ Input Parameters :
Rows and Columns \

-+ Yes

~~ Append S A M cell

Fig. 4.34 Serial Access Memory Algorithm

Chapter 4: Generators 67

4.13.3 Output

The output of a 5x3 SAM is shown in Fig. 4.35.

cn
3 a
+

+

c3

Fig. 4.35 Serial Memory Array (5 x 3)

The simulation for the 5 x 3 SAM is shown in Fig. 4.36. As seen from

the simulation, the 5-bit word is delayed three clock cycles.

...
r a b c Display Uindolu 1: timescale = 1.WnS
irnc - 55.56nS -

00 10 1 10100 lllll 00000 11 100

...
;. 00101 .i. 10100 j lilll i j 00000 , 11100

.

00000

... :..

++++++++--- ci-cccl+++-t+-+++-l
53 57 Si 65 69 73 7 7 81 85 89 93 97 101 105 109 113 117 121 125

3 1:

input

n u t p u t

Fig. 4.36 Simulation of 5 x 3 SAM

Chapter 5 ~ a i n Components
5.0 Development of Main Components

Now that component generators have been developed for the most

commonly used components, it is time to use these to construct the main

components. Once the generated components are placed in a satisfactory

manner, MicroRoute will be used to do the block routing for the system.

5.1 Numerically Controlled Oscillator

As stated in Chapter 3, the NCO needs to provide samples of

cos(2nfCnT) and sin(2dCnT). Therefore, the argument 27cfcT needs to be

accumulated each clock cycle by a binary accumulator. An accumulator is shown

in Fig. 5.0

Reset '
I

I I
I

I

Fig. 5.0 Binary Accumulator

The accumulation of a binary number will result in an overflow as soon as the

accumulation becomes larger than can be handled by the adder and the register.

In order to avoid the need for circuitry to control this overflow, a technique can be

68

Chapter 5: Main Components 69

used to design an NCO that does not care about the overflow. Consider a 10 bit

system where the phase being accumulated is represented as a 10 bit binary

number. As soon as the accumulation results in an 11 bit number, an overflow has

occurred. Assume that the binary representation of 2.n is an 11 bit number equal to

10000000000. The fact that any phase subtracted from 2.n will result in the same

angle will resolve the overflow problem. A simple truncation of the 11 th bit is the

same as subtracting 2.n from the phase. For example, assume that the phase

increment is 01 00000000 and the last accumulation resulted in the binary number

1111111111. After the next accumulation, the result will be 1001111111 which is

approximately equal to 2.5.n. If the l l th bit is truncated then the result is

approximately 0.5.n which is the same angle as 2.5.n and is represented by a 10 bit

binary number. See Fig. 5.1 for more on this example.

1 1 1 1 1 1 1 1 1 1 =1023n/512
f 0 1 0 0 0 0 8 0 0 0 =256n/512

1 0 0 1 1 1 1 1 1 1 1 = 1279x1512
approx = 2 . 5 ~

2 . 5 ~ - 2.n = 0.5.n
Truncate the 11 th bit from the accumulation
and the same result will occur.

XOOl 1 1 1 1 1 1 1 =255d512
approx = 0 . 5 ~ ~

Fig. 5.1 Accumulation Example

The result is a free running NCO that needs no control circuitry other than a

simple reset. The phase recovery unit also provides a 10 bit phase estimate. This

is done by inserting an adder after the accumulator to add in the phase estimate.

This is shown in Fig. 5.2.

Chapter 5: Main Components 70

ROM

Adder

The argument 2.nfcnT + 8, is then given as an input to a ROM which

is used as a look-up table for the values of cos(2nfcnT + 0,) and sin(2.nfcnT + e,).

2048 x 10 bit 1

10 bit 2

There are 1024 locations of data which corresponds to a phase accuracy of It/

512. The phase increment needs to be converted to a binary number by

SAM

nTc
- = 2.nfcnT. From this relation, n = d2, so the binary representation for the 5 12
phase increment is 01 00000000. This increment can not be changed to any other

number since the filters are designed for a fixed sampling frequency. If adaptive

filters are used, then there would be some flexibility for the phase increment.

10by 1 2

5.1 .I Organization and Layout

Table 3 shows a list of the components that are needed to construct

the NCO. The adders and the SAMs are combined to form the accumulators and

the ROM is used to store the Sin(ot) and Cos(ot) look up table data.

Table 3: NCO Components

Component I Size 1 Number

The organization of the NCO is shown in Fig. 5.2.

Chapter 5: Main Components 71

ROM

Fig. 5.2 Organization of the NCO

The layout of the NCO is more long than wide for pitch matching reasons. The

inputs consist of the two clocks that are used by the ROM and the SAMs, a reset

and the IO-bit phase estimate from the PRU. The layout of the NCO is shown in

Fig. 5.3.

output 41 Phase Estimate

Fig. 5.3 Layout of NCO

Chapter 5: Main Components 72

..

11111111 ; 10000000 I 00000000 01111111 Illlllil

..

5.1.2 Simulation

C O S

The simulation of the NCO is shown in Fig. 5.4. The Sin(ot) and

Cos(ot) outputs repeat themselves after every four samples. This is because this

system is designed to receive signals represented by 4 samples / symbol.

Probe D i s p l a y Uindom 1: timescale 8 O.BQnS
Time = 26.04nS

00000000 11 11 11 10 11 111 ill 0000000 1 00000000 111 111 10

...

.
4.0 20.0 32.0 36.0 4.0.0 44.0 40.0 52.0 56.0 60.0 64.0 60.0 72.0 76.0

sin

Fig. 5.4 Simulation of the NCO

5.2 Lowpass Filter

The equation for the filter is:

H(z) = - 0 . 0 3 4 (~ ~ + z - ~) + 0 . 0 5 5 (~ ~ + ~ - ~) -0.101 (z3+zm3) +
0.316 (z' + z-') + 0.499

The coefficients are generated from the Parks McClellan algorithm at NASA. It

can be seen from the equation that there are five multiplications that are needed

to do the filtering operation. Multipliers are very large and take long periods of time

to evaluate, so it would be advantageous to not have these. There is a technique

that can be applied to digital filters that will require no multipliers to do the

multiplication. Multiplication can be done by simply shifting the data to the left or to

Chapter 5: Main Components 73

Coefficient

-0.03125

0.0625

-0.09375

0.3125

the right a certain number of bits. A number multiplied by 2", where n is an integer,

would be shifted to the left n places if n is greater than zero and shifted to the right

n places if n is less than zero. To apply this to digital filtering, the coefficients must

be converted to the nearest power of two value. The new coefficients are shown in

Table 4.

2" Representation

2-5

2-4

2-4 + 2-5

2-2 + 2-4

Table 4: Power of Two Coefficients

1-
0-
1-
1 -
0-
0-
1-
0-

- 0- - 0
- 0- - 0
- 0- - 0
-
- - 3 Register - 0- Register -

A 0- 6
- - 0

- 1 --

0.5 1 2-'

2-5 178 = 5.56 00000101=5

Fig. 5.5 Sample Multiplication

Chapter 5: Main Components 74

I

8-bit
Adder

In the case where the coefficient is described by the addition of two numbers,

such as 2-4 + 2-5, an adder is needed to complete the multiplication. Fig. 5.6

shows an illustration of the multiplication of (1 01 1001 0,) by (2-4 + z~). The 8-bit

- - 0
- 0 -

- Register - ?
- - 0
- - 0

- 0

-

-

word is shifted 4 times to the right and added to the same 8-bit word shifted 5

times to the right. The register then holds the result of the multiplication.

Shifted
1 4-bits
0
1
1
0
0
1
0 Shifted

5-bits

00001 011
1 I I l I I ~ L O

2-4 178 + 2-5 178= 16.68 oooO1000=16

Fig. 5.6 Sample Multiplication

In both examples the answer is always approximately correct if we truncate what

is after the decimal point. There is no loss if the fractional part is not truncated. Of

course there will be a need to truncate some of the fractional part in order to keep

the word size at a practical length. The trade off is a loss in accuracy for the

reduction of area and an increase in speed. Obviously the area and speed saved

here more than compensate for the loss of accuracy, so the filter should be

implemented with no multipliers.

Chapter 5: Main Components 75

5.2.1 Organization and Layout

Table 5 shows a list of the components that are needed to construct

the lowpass filter. This table makes it clear why the component generators are

needed.

Table 5: LPF Components

The organization of the filter is shown in Fig. 5.7 and the layout is shown in Fig.

5.8. The inputs are a clock input, a reset and an 8-bit data word. The output is only

an 8-bit word.

Chapter 5: Main Components 76

- L - L

* SAM - SAM SAM SAM SAM
8 by 1 8 by 2 8 by 2 8 by 2 8 by 2

I

Fig. 5.7 Organization of Lowpass Filter

Inputs
I, Clock -.+

Reset -.+

Vdd -.+

Gnd +

I
outputs

Fig. 5.8 Layout of Lowpass Filter

Chapter 5: Main Components 77

5.2.2 Simulation

Fig. 5.9 shows how the amplitude response of the Parks/McClellan

lowpass filter. The spectrum of the signal after the filter is shown in Fig. 5.10. Note

that these two responses look very similar.

-25e6 0 25e6

Fig. 5.9 Amplitude Response of the Lowpass Filter

Fig. 5.10 Spectrum After Filter

Chapter 5: Main Components 78

Component

Adder

SAM

S A h 4

Counter

5.3 Integrate and Dump Unit

Size Number

10 bit 1

10 bit 1

1 bit 1

4 state 1

The IDU accumulates 4 clock cycles of data and makes a decision

of which bit is sent. If a logic 1 is sent, then the data is expected to be positive. If a

logic zero is sent, then the data is expected to be negative. In two’s complement

mathematics, the sign bit is the most significant bit. If the most significant bit is a

logic 1, then the data is said to be negative and if the most significant bit is a logic

0, then the data is positive. After an accumulation of positive data, the sign bit will

be logic 0 and after an accumulation of negative data, the sign bit will be logic 1.

Therefore, the sign bit needs to be inverted in order to receive the correct data.

The IDU is made up of an accumulator, and a latch with an inverted

output. The organization of the IDU can be seen in Fig. 5.11.

5.3.1 Layout and Organization

All of the components used for the IDU are shown in Table 6.

The layout of the IDU is shown in Fig. 5.12. The layout is very small and simple.

Chapter 5: Main Components 79

Data
In

~

10 by 1 1~
,

la- TRU Clock
(Reset)

4 state

GND

Fig. 5.11 Organization of Integrate and Dump Unit

Data input

Vdd

Fig. 5.12 Layout of IDU

Clock
Reset
Data
out

5.3.2 Simulation

The simulation of the IDU is shown in Fig. 5.13. After four

Chapter 5: Main Components 80

accumulations, the output will be the inverse of the sign bit.

0000 1100

. .

1100001101 ; 1100001100 ; 00011111Q0 0010111010 , 0010111101 ; accum

:. _.........________._........ . ..___________........ ;'
. .

f
Accumulation up to this

DH dat-out f
Accumulation up to this

negative, , , , , , , , , , , , , ,point i s m e , , , , ,
116.0 124.0 132.0 140.0 148.0 156.0 164.0

Fig. 5.13 Simulation

5.4 Phase Recovery Unit

The PRU requires that there be two accumulators in its architecture.

The accumulators are designed as in Fig. 5.14. One will accumulate 4 samples

and the other will be designed to accumulate 8 symbols.

Fig. 5.14 Accumulator Structure

The phase recovery unit needs different clocks for proper operation. For example,

the PRU has a 4-bit accumulator that outputs it's sum after 4 clock cycles and an

8-bit accumulator that outputs it's sum after 8 clock cycles. Different clocks must

be used to enable the outputs of these accumulators at different times.

Chapter 5: Main Components 81

/ Latch Latch2 \

cl k3 dec
rom ClKD

c
Fig. 5.15 PRU Clocking Scheme

It can be seen from Fig. 5.15 that the clocking scheme for the PRU is very messy

and will require careful design. The PRU clock is shown in Fig. 5.16.

clk3 dk2b d

Fig. 5.16 PRU Clock Unit
The 4 sample accumulators use clk2b as a reset and clk3 as the

main clock. The ROMs use Latch and Latch2 as clocks for the latches, dec and

Chapter 5: Main Components 82

Reset

dec2 as clocks for the column decoders, SA and SA2 as clocks for the sense

amps and rom and romi! for the pre-charge clocks in the ROM arrays. The 8

sample accumulator uses clk6 as it’s main clock and clk5 as a reset. Clk7 drives

the two SAMs that hold the N symbols before and N symbols after the symbol

Q -

Clk > Q - -> Q -
- -

whose phase is being estimated. Clk8 is used to latch the output of the phase

ROM.

All of the clocks here are carefully buffered such that all of the

signals propagate when they are supposed to. The clocks are made with CMOS D

type flip-flops. A reset is incorporated into the counters so that when the system

resets, so would the counters. The 4-state counter is shown in Fig. 5.1 7.

Fig. 5.17 4-State Counter Circuit

5.4.1 Layout and Organlzation

Table 7 shows a list of the components to be used for the PRU.

Table 7: Components List for PRU

Chapter 5: Main Components 83

The organization of the PRU is shown in Fig. 5.18 and the layout is shown in Fig.

5.1 9.

Viterbi Nonlinearities
ROM

4096 x 12

IlII..-l 6by1 6by1

Accumulate
4 Circuit

t t
I Data Q Data

I-
Phase Estimate

ROM
4096 x 10

I

Accumulate

output

Fig. 5.18 Organization of Phase Recovery Unit

Chapter 5: Main Components 84

5.4.2 Simulation

A portion of the simulation for the PRU is shown in Fig. 5.20. A zero

phase error signal is introduced to the demodulator. From the simulation, the

detector is estimating the phase to be approximately 2n = On: which is

approximately zero phase error.

obe Display Window 1: t imesca le =; 28.013n5
me = 1172,69nS

busp

l , , . , I , , , , I , , , , I , ~ ~ , l , , , . l , , , , l , , , , l , , , , I , . , , I , , , , l , , , ,
1 " " 1 " " 1 " " 1 " " I " " I ' " ' I " " I " " I " " I " " I " "

196 336 476 616 756 896 1036 1176 1316 1456 1596 1736

Fig. 5.20 Simulation of the PRU

5.5 Timing Recovery Unit

The TRU is used to extract the timing from the signal. It makes a

decision based on the number of consecutive zero crossings. If there are three

consecutive positive samples paired with three consecutive negative samples, or

vice versa, then the transition signal will be logic 1. After 3 consecutive transition

signals, the symbol clock will be reset.

5.5.1 Layout and Organization

The components used for the TRU are shown in Table 8. The zero

crossing detector is made up of the logic gates as shown in Fig. 3.8, and the 4

state counter is made from D type flip-flops.

Chapter 5: Main Components 85

Table 8: Components List for TRU

Components

Zero Crossing Detector

SAM

SAM

SAM

Counter

Glue Logic

Size I Number

5 x 1 bit

2 x 1 bit

4 x 1 bit I 2

4 state -4-
The organization is shown in Fig. 5.21 and the actual layout is shown in Fig. 5.22.

There is a clock input and a reset input. The sign bit of the lowpass filtered data is

also input to the TRU. The output is the symbol clock.

Sign Bit i

Input
Zero 4x1
Crossing + SAM
Detector

I
-

4 state 2x1
Counter SAM

S i m b o y
Clock

Fig. 5.21 Organization of the TRU

Chapter 5: Main Components 86

GND

Bit In

i Vdd

I

Symbol Clock Clock Reset

Fig. 5.22 Layout of the TRU
5.5.2 Simulation

The simulation of the TRU is shown in Fig. 5.23. It shows the TRU

locking onto the timing of the signal.

T i m e = 190.56nS I nck On

DL

I
126 1 5 4 182 210 238 266 294 322 350 378 406 434 462 490 518 546 574 6 0 2

QPSK-syrn-clk

Fig. 5.23 Simulation of Timing Recovery Unit

Chapter 5: Main Components 87

- 0 0 0 0 0 0

5.6 Unique Word Detection

,-+1

A unique word composed of 15 symbols is used to identify the start

of the data and to resolve the phase ambiguity. The bits from the IDU are fed into

0 1 0 1 0

the UWD every symbol period and are compared to the UW stored on the chip. If

the UW bits match those in the shift register or are the inverse of those in the shift

register, then the data has started. A 15 bit SAM is used to act as a shift register.

As an example, consider a 6 symbol unique word UW = 101010. All of the bits in

the SAM are initially zero so the output would have 3 places that are incorrect, as

shown in Fig. 5.24.

Input Bits

uw

If after some time, the UW appeared in the shift register, then the output would

have zero places that are incorrect, as shown in Fig. 5.25.

Chapter 5: Main Components 88

Input Bits * I 0 1 0 1 0

Fig. 5.25 Example of Unique Word Detector

From these examples, it is seen that the number of logic 1 outputs corresponds to

the number of incorrect places. So there is a need for a ones counter to give the

number of places that are incorrect. An adder cell can be used as a 1’s counter as

shown in Fig. 5.1 1. At the output of each of the adder cells is a two bit word that

tells how many 1’s are at the input. Fig. 5.26 shows that these 2 bit words can be

added up to tell the total number of logic 1 inputs.

I O I l / O I ’ I O I w w u u w w 1 (0 11 (0 (1 (0

uw -1 LLLLLL

1 A B Cin / / A B Cin 1
+ +

word1 word 2

I l l 2 + 1 = 3 places incorrect 0 1 1

Fig. 5.26 Unique Word Detector

Fig. 5.27 shows a typical output of the UWD.

Chapter 5: Main Components 89

- ‘ ‘ \
I I Register bits = Unique Word
I I
I I

Fig. 5.27 Typical Output of UWD

If the UW is not detected then it is said to be a miss.There is a

probability of miss. Because of noise, the UWD should be designed to tolerate a

few incorrect bits. The probability of a miss is

where E is the number of bits that can be incorrect, 1 is the number of bits that are

incorrect, N is the number of bits in the UW and p is the bit error probability. For a

given bit error probability, a probability of miss can be found. For example, in this

system, N = 15 and E = 1. If the demodulator performed with p = IO” then the

probability of miss would be PmiSs = I O - *

5.6.1 Organization and Layout

Table 9 shows the component list for the UWD.

Chapter 5: Main Components 90

Table 9: Component List for the UWD

The organization of the UWD is shown in Fig. 5.28 and the layout is shown in Fig.

5.29.

Unique Word

v)

B nf en

8 x

Fig. 5.28 Organization of UWD

Chapter 5: Main Components 91

Fig. 5.29 Layout

5.6.2 Simulation

The simulation of the UWD is illustrated in Fig. 5.30. It can be seen

from the simulation that when the unique word appears in the registers, the output

goes to zero as expected.

T i m e = 660.67n5

E

H:;::::::! ; : : : : : : : : : : : : + : : : : : : ; : : : : : : : : : : : : : : : : : : ! I:+..++
526 634 642 650 658 666 674 602 690 698 706 714 722 730 730 746 754 7 6 2

busreg

busones

buscuunt

b i t-i n

Fig. 5.30 Simulation

Chapter 6 + * Chip Layout

$1 2ns 8ns 2ns

6.0 Clocking Scheme

8ns

Three clocks are needed for proper operation of the demodulator.

These are shown in Fig. 6.0.

l l

n r l
5ns 5ns 43

\

Fig. 6.0 Chip Clocks

In order to keep the complexity minimized, only one 1 OOMHz clock should be

used at the input of the chip. This clock is denoted as $3. Therefore, there is a

need for clock shaping on the chip. The circuits shown in Fig. 6.1 are used to do

the clock shaping.

92

Chapter 6. Chip Layout 93

Fig. 6.1 Clock Shaping Circuitry

The delay unit is an RC network made with transmission gates. The resistance

and the capacitance can be set by properly sizing the transistor of the

transmission gates. So the delay can then be set to whatever is needed by the

designer. Fig. 6.2 shows the simulation of the clock shaping circuits.

Fig. 6.2 Simulation of Clock Shaping Circuits

The clocks are distributed about the chip in a tree fashion. This will distribute the

clocks with equal delays.

Chapter 6. Chip Layout 94

6.1 Buffering Scheme

A tree buffering scheme is adopted for this chip design. This is

shown in Fig. 6.3. This scheme equalizes the clock delay to each of the

components.

ci k

cl k

-
cl k

clk

elk
-

Fig. 6.3 Buffering Scheme

6.2 Arrangement of Components

The components are arranged as shown in Fig. 6.4.

Fig. 6.4 Organization of the Demodulator Chip

Chapter 6. Chip Layout 95

~

IDU

UWD

TRU

Multiplier

LPF

NCO

PRU

6.3 Final DesSgn of Demod

~~

208 x 262

310 x 243

190x 194

349 x 28 1

865 x 770

1061 x 468

1507 x 1267

The areas of all of the main components are shown in Table 10.

Table 10: Area of the Main Components

Component 1 Area (pm2)

The area of the demodulator is 2.0 x 2.6 mm2. The total number of

transistors is 97,184. The percentage wiring area used is approximately 30%. The

demodulator is successfully placed on a single chip.

Chapter 7 Simulation
7.0 Simulation

Simulation plays an important role during all phases of the design

and engineering of any communication system [I 41. It helps debug any problems

that the system may have and it can provide good estimate as to how the system

will perform in reality. Simulation of a communication system can be performed in

one of two ways: bandpass simulation or baseband simulation. In baseband

Simulation, there is no need to do any signal upconversions and downconversions

since the entire simulation is done at baseband. This type of simulation simplifies

the different models in the system and shortens the simulation times considerably.

The bandpass simulation performed in this research illustrates the upconversion

and downconversion of the transmitted signal. It is a computational burden due to

all of the samples that must be taken in order to describe the signal correctly, but it

needs to be done to simulate all of the components in the demodulator.

Three forms of system simulation are conducted during the course

of this research. A formula based simulation written in the C language is used for

initial performance checks. A register based simulation in VHDL is used to

represent the demodulator more accurately than the formula based simulation.

Layout simulation is done on all of the layout components to verify their

functionality and timing. These three simulations will be described in full detail

below.

96

Chapter 7. Simulation 97

7.1 Formula Based System Representation

The formula based simulation is the first step in creating a

communication system. Theoretical equations are used to represent each

component and provide the designer with an initial estimate of the system

performance. A block diagram of the formula-based system is shown in Fig. 7.0.

Sampler

1

Fig. 7.0 Formula Based System Block Diagram

The assumption that is made here is that the signal is coming from a satellite that

has on-board processing. Each of the blocks will be discussed in the following

sections.

7.1.1 Pseudo Random Number Generator

Good random number generators (RNG) are very important for

simulation. They will produce random symbols to be modulated and random noise

to be added to the signal. Unfortunately, all RNG sequences will repeat after a

period of time and will produce no new information to the simulation. Therefore it

is very important to choose a RNG with a very long period.

Chapter 7. Simulation 98

0 C Ij+l c 0.25

0.25 < Ij+l < 0.5

The uniform RNG used in this research is found in [13]. This RNG is

designed specifically for very long simulation sequences. It combines two different

random sequences with different periods so as to o ain a new sequence whose

period is the least common multiple of the two periods.

0

1

The random number sequences can be generated using the

congruential equation:

Ij+l = (a I,) mod (m) (7 -0)

where j = 0, 1, . . ., a is an integer multiplier, and m is the modulus. The integers a

and m are chosen very carefully in order to provide a proper random sequence.

The two sequences used in the RNG in [I31 are defined by the parameters:

ml = 2147483563, a1 = 40014

and

m2 = 2147483399, a2 = 40692.

The combination of these two sequences provides a period of about 2.3~10~

samples which is suitable for this simulation.

The uniform RNG provides random numbers in the range of [0,1].

The symbols that need to be generated for modulation need to be in the form of

an integer in the range from 0 to 3. The random number to integer conversion is

shown in Table 11.

Table 11: RND Number to Symbol Conversion

Random Number I Symbol

OS < Ij+l < 0.75 <

Chapter 7. Simulation 99

7.1.2 Modulator

A QPSK modulator can be represented by the constant envelope

signal,

where E, is the symbol energy, Tsym is the symbol duration and i = 0, 1,2, and 3 is

the symbol to be transmitted. The symbols are generated using a uniform RNG.
The carrier power is:

For simulation purposes, it is convenient to normalize the carrier power to

C' = E, (7.3)

which is done by removing the Tsym in (7.1) resulting in:

2rci
4

si (t) = p E $ s (27Tfct + -) (7.4)

The symbol energy is normalized to E, = 2, which allows for simple calculations of

EdN, since E, = 2Eb, making Eb = 1.

A fast fourier transform is performed on the sampled baseband data

which returns the spectral information shown in Fig. 7.1. It is characterized by a

main lobe with a bandwidth of 25MHz and some smaller sidelobes.

Chapter 7. Simulation 100

Fig. 7.1 Spectrum of the Sampled Baseband Signal

Computer simulation can not produce a true analog signal. The

analog signal is represented with 16 samples per symbol. There is negligible

increase in performance if a greater number of samples per symbol are used. A

sample of the modulated signal is shown in Fig. 7.2.

Fig. 7.2 QPSK Signal

The fast fourier transform is used to find the spectral information of

the sampled analog signal. The spectrum of the pure modulated signal is shown

Chapter 7. Simulation 101

in Fig. 7.3. It is a shifted version of the baseband spectrum shown in Fig. 7.1. The

main lobe is centered at fc=25MHz and has a bandwidth of 5 0 M H t .

Fig. 7.3 Spectrum of the Modulated QPSK Signal

7.1.3 Bandpass Filter

Analog filters are required at the receive end of a satellite system.

Bandpass filters are used to get rid of the unwanted noise that exists outside of

the band of the desired signal. Bandlimiting is also used to alleviate interference

caused by other signals in the channel.

An ideal bandpass filter is used in this simulation. It is designed to

only pass the main lobe of the signal’s spectrum. The filtered signal’s spectrum is

shown in Fig. 7.3. The Ideal bandpass filter is given by:

IH(f)l = 1 fo rO<f~5OMHz

0 otherwise

Chapter 7. Simulation 102

Fig. 7.4 Bandpass Filtered Spectrum

7.1.4 Sampler

After the bandpass filter, an inverse fast fourier transform is

performed on the spectrum to return the signal back to the time domain. This

signal with 16 samples per symbol is then sampled to produce a signal with 4

samples per symbol and is used as an input to the demodulator. This is done by

using every fourth sample to describe the modulated signal. The spectrum of the

signal with 4 samples per symbol is shown in Fig. 7.5. This signal is centered at

f,=25MHz and has a bandwidth of 50MHz. The sampling rate is 1OOMHz which

satisfies the Nyquist theorem.

Fig. 7.5 Spectrum of the 4 Samples Per Symbol Signal

Chapter 7. Simulation 1 03

7.1.5 Additive White Gaussian Noise

To make the simulation as realistic as possible, the channel is

chosen to be an additive white gaussian noise channel (AWGN). AWGN samples

have an infinite variance (power) and a mean value of zero. Since it is impossible

to simulate an infinite variance that is required to characterize the noise, another

means of adding noise to the simulation is needed. When AWGN samples go

through a filter, they become correlated and the noise variance will become finite.

In reality, the modulated signal and the AWGN noise will be passed through a

receive filter. For simulation purposes, the noise can be added after the receive

filter with a finite variance as long as it is added in the frequency band that the

filter passes.

The only noise of interest for simulation is the noise that has

frequencies

Signal b*

Noise ..
Fig. 7.6 Power In One Sample Period

which are less than l/Tsamp where Tsamp is the sampling interval. The signal and

noise power obtained in a sample period can be illustrated in Fig. 7.6. Let the

signal power be denoted as S and the noise power be denoted as N. The signal

power depends on the amount of energy per symbol, Esym, added at the

modulator end. The noise is AWGN and has a variance of Nd2 where Nd2 is the

power spectral density of the noise. Over the simulation bandwidth, the amount of

Chapter 7. Simulation 104

noise power is:

N = N, I 2 Tsmp (7.5)

The carrier power is normalized by Tsym in (7.3). The CIN ratio must remain the

same, so the noise variance is also scaled by the same factor to maintain this

ratio. Therefore, the scaled noise variance used in the simulation is

N = NoTsym/2Tsamp (7.6)

which can be written as

N' = N0R/2 (7.7)

where R = Tsyflsamp is the number of samples per symbol.

Gaussian samples can be generated using the Box-Muller method

[I 41 with a mean p and a standard deviation o with the following equation:

NORM (p, O) = o J - 2 ~ n (R N D) COS (R N D) + p (7.8)

where RND is a uniform random number generator in the range of [0,1], and
11 12 o=N .

7.1.6 Demodulator

The demodulation is done by multiplying the modulated signal by

cos (27Lf,t) (7.9)

and

(7.10)

A small portion of the inphase channel samples after downconverting is shown in

Chapter 7. Simulation 105

Fig. 7.7.

Fig. 7.7 Inphase Samples

The inphase and quadrature samples are then filtered and integrated over a

single period. A decision is then made as to what bit has been transmitted. An

example of the output of the demodulator is shown in Fig. 7.8 where the 32 PR

symbols, 20 alternating TR symbols, the 15 UW symbols, and the data symbols

are noticed.

--4 b
PR TR uw Data

Fig. 7.8 Inphase Signal Decisions

Chapter 7. Simulation 106

7.2 VHDL Register Level Simulation

In order to more accurately represent the demodulator system, it

had to be simulated in VHDL. This will allow a more precise representation of all

of the components and how they will work together. A behavioral model written in

the VHDL language describes the operation as well as the delay of a component.

Many VHDL components can be connected together to form a circuit structure

which can then be simulated.

7.2.1 VHDL Representation

VHDL code is written such that it will emulate the functionality of a

layout component. If this simulates properly then there will be no doubt that the

functionality of the system will be verified.

An example of the level of VHDL representation used in this is the

adder cell. An adder module could have been written such that it could add

together any word size, but will not represent the functionality of the layout

component. A better way of representing it would be to create an adder cell with

VHDL that would function the same as the layout adder cell. Simplified code for a

VHDL adder cell is shown below:

Library unix;
Use unix.math.ALL;
Library lsim. terminals. ALL;
Use 1sim.pragmas.ALL
ENTITY adder-cell IS
PORT(a, b, cin : IN LSIM-LOGIC; sout, cout : OUT LSIM-LOGIC);
END adder-cell;
ARCHITECTURE bhv OF adder-cell IS
FUNCTION sum (aa, bb, cc : LSIM-LOGIC) RETURN LSIM-LOGIC IS

Chapter 7. Simulation 1 07

BEGIN
RETURN (aa AND bb AND E) OR (aa AND (NOT bb) AND (NOT cc)) OR (NOT cc) OR ((NOT aa)
AND (NOT bb) AND cc);
END sum
FUNCTION carry (aa, bb, cc : LSIM-LOGIC) RETURN LSIM-LOGIC IS
BEGIN
RETURN (aa AND bb) OR (aa AND cc) OR (bb AND cc);
END carry
BEGIN
sout e= sum (a, b, cin);
cout <= carry (a, b, cin);
END bhv

To create an n-bit adder, n of these adder modules will have to be

connected in series. This can be done by writing a VHDL structure or by using the

Mentor Graphics Led graphical interface. The graphical interface method is much

simpler and less time consuming, so this is the route that is taken.

An icon must be created for the VHDL adder code. The inputs and

outputs of the icon should be the same names as used in the code. An example of

the icon used for the adder-cell is shown in Fig. 7.9.

adder-cell-bhu

Fig. 7.9 Icon of Adder Cell

Notice that the input and output names correspond to the names given in the

VHDL code. This icon can be called as an instance into another cell where it can

Chapter 7. Simulation 108

be wired to other cells. An 8-bit adder is shown in Fig. 7.10.
Q - N ~ t i n m r m m a m m m m m m m

Fig. 7.10

Q - N O t W W P - ~ a a a a u u u B ; l % a B ! % L

Ripple Carry Adder Representation (8-bit)

The input and output terminals must be propagated before simulating. The names

of these new terminals can be arbitrary. A netlist must be written from the

graphical interface. This netlist will be simulated with VHDLsim, which is very

similar to Lsim except that it will look for the compiled library in the parts directory.

If the VHDL adder-cell code is saved into a file called adder.\/, then the adder-cell

icon must be named adder-bhv since this is what is in the compiled library in the

parts directory.

The entire demodulator system is constructed using this method.

This involved a lot of time, but the results are satisfying. An example of the VHDL

model of the low pass filter is shown in Fig. 7.11.

Chapter 7. Simulation 109

Fig. 7.11 VHDL Low Pass Filter

7.3 Layout Simulation

The layout simulation is done on each sub-component using Lsim.

In this stage, proper sizing of the transistors is done to allow for a proper operation

of the component under certain loads. The delay information is then extracted

from the layout simulation and incorporated into the VHDL simulation as a look-up

table. This technique allows the VHDL model to perform exactly as the physical

layout will perform.

7.4 Symbol Error verses EdN, Simulation

Various techniques are used to simulate the demodulator in this

research. One way to check the performance of the chip is to find the probability

of symbol error, P,, given an Et,/N,. The total number of symbols used in these

Chapter 7. Simulation 110

simulations are varied from 2'' symbols to 217 symbols. In order to obtain a fair

simulation, the n enerated should be greater

than 1 O/Pe. This simply states that there should be at least 10 errors generated in

the simulation interval of 1O/Pe symbols. The results will be much better if the

number of symbols is increased to greater than

50/Pe. P, is calculated at various EdN, and compared to a theoretical P, curve

for QPSK, which is given by:

of symbols that need t

where

2
e-' dz 2 0 0 erfc(u) = %Iu

(7.11)

(7.12)

The actual curves generated for the QPSK and the SQPSK are the same, so only

one curve is illustrated. As shown in the signal of Fig. 7.4, only the main lobe is

passed by the bandpass filter. The filtered spectrum is then inverse fourier

transformed and sampled at 4, 8, and 16 samples per symbol and simulated for

different EdN,. The results are shown in Fig. 7.12.

Chapter 7. Simulation 111

16 sampleslsymbol
8 sampleslsymbol
4 samples/symbol

1

10-1

I 1 o-2

I 0-3

Pe

1 -
0 5 10

Eb/No (dB)

Fig. 7.12 Pe Simulation Results

These results show that the performance is the same no matter how many

samples per symbol are used to represent the signal. This is because increasing

the number of samples per symbol gives no more information about the

bandlimited signal.

The system degradation is caused by the bandlimiting of the signal

with the bandpass filter. To illustrate this, the bandwidth of the ideal bandpass filter

is increased from passing only the main lobe to passing the main lobe plus a

number of sidelobes. This simulation is performed with a signal represented by 4

samples per symbol. The results are shown in Fig. 7.13.

Chapter 7. Simulation 112

1

lo-’

10-2

10-3

p e

4 SamplesEJjmbol

Main Lobe
Main Lobe
i- 2 Side Lobes

10-4 1 \
0 5 10

Eb/No (dB)

Fig. 7.13 Affects of Increasing The Bandwidth of the Bandpass Filter

These results demonstrate that with increased signal bandwidth, the

performance will be improved. The reason for this is that the correlation receiver is

perfectly matched to a pure QPSK modulated signal. Therefore, it acts as an

optimal filter. As soon as the signal is bandlimited, the correlation receiver is no

longer matched to the signal and becomes sub-optimum. As the bandwidth of the

bandpass filter is increased, the response of the combination of filters approaches

the response of the matched filter which improves performance.

In practice, a communication system is designed to use the smallest

possible bandwidth. An extra 2dB of power must be provided to achieve a 1 0-6 P,,

compared to the theoretical power level needed for this error rate, in a carefully

filtered QPSK link [lo].

Chapter 8 Conclusions
8.0 Conclusions

A single chip QPSWSQPSK demodulator has been developed using

the 0.8~ CMOS technology. All design specifications are implemented

successfully. Modifications have been made to a previous architecture to enhance

the performance and to decrease the area of the demodulator. The final area of

the demodulator is 2.0 x 2.6 mm2, which will have no problems fitting in the chip

area assumed to be 1.4 x 1.4 cm2.

Simulation of the demodulator has been done in using a functional

level representation, a behavioral level representation, and a component level

layout simulation. Verification of the block placement and wiring has also been

accomplished using a test vector approach.

A key part of the research is the development of the component

generators. Generators are developed for the adder, multiplier, ROM and SAM.

These design automation techniques are used often and decreased the design

time considerably.

The VLSI design of the demodulator is feasible. Degradation caused

by bandlimiting the signal will require that the signal power be increased by about

2dB in order to operate with a practical probablilty of symbol error of P,=l Om6. This

is usually the case anyhow for a carefully filtered QPSK channel.

113

Chapter 8. Conclusions 114

8.1 Future Research

Time is an important factor when designing large VLSI systems

such as a demodulator. Knowledge may be gained in the middle of the research

that would improve the system greatly, but there is no time to change the existing

architecture. Some of the findings that may improve the system are covered in the

following sections.

8.2 Timing Recovery

A more reliable timing recovery unit should be used in further

research. Although a little amount of filtering is done in the channel detection

section of the TRU, there are better algorithms that will enhance the system

performance and deal with noise a little better. Two papers of interest are 11 51 and

[16]. The first presents a TRU that uses only one sample per symbol to extract the

timing information. This TRU must be present in a directed decision system. The

second presents a TRU that does it’s decision with two samples per symbol. It can

be used both at baseband or at bandpass levels.

8.3 8PSK and 16QAM

NASA has encouraged further research into a couple of different

modulation schemes. These are the 8-PSK and the 16-QAM modulation

schemes.

8-PSK is another phase shift keyed modulation scheme. It has a greater

bandwidth efficiency than QPSK at the expense of more transmitted power

needed. The architecture is not much different from that of a QPSK demodulator.

Chapter 8. Conclusions 115

Phase
Discri minatot'

The envelope of the signal is constant so the constellation of the 8-PSK signal is

still circular as in the QPSK case. A block diagram of an 8-PSK demodulator is

B

B

shown in Fig. 8.0.

cos (2nfct)

-PSK
ignal

-PSK
-ignal

-7 1 -

x
T

~~~~ 

Sin (2nfct) 

Fig. 8.0 8PSK Demodulator 

16-QAM is a combination of phase shift keying and amplitude 

modulation. It enables the transmission of M=L2 independent symbols. Since the 

amplitude is not constant, the constellation is no longer circular. The constellation 

now becomes square. Fig. 8.1. shows a block diagram of an M-ary QAM 

demodulator. 

Cos(2nfct) 

Fig. 8.1 16QAM Demodulator 

I 
Parallel to 
Serial 
Converter 



Chapter 8. Conclusions 116 

For more information on these two modulation schemes, see [3]. 

8.4 Assume Off-Chip Analog Downconversion 

In many applications, the IF rate will be above 70MHz. Today, the 

CMOS technology is unable to handle such high sampling rates. So an off chip 

analog downconversion unit should be assumed in further research. This will 

simplify the system and the simulation of the system. 

8.5 Baud Rate = IF 

If the baude rate (symbol rate) is equal to the IF signal, then there is 

no need for a down conversion unit. Consider the sinusoids shown in Fig. 8.2. 

0 1 0 -1 

Sin (2nfct 

cos (2nfct 

1 0 -1 0 

Fig. 8.2 Sinusoidal Samples 

If the symbol is sampled 4 times then the oscillator samples become cos(n~d2) 

and sin(nd2). The values of these sinusoids are 0, 1 , 0, -1, which are shown in 

Fig. 8.2. Therefore, there is no need for a multiplier. All that is needed is a 



Chapter 8. Conclusions 117 

demultiplexer and an inversion control unit [17] as shown in Fig. 8.3. 

-+Downconverted I Data 4 1 t o 2  
Digital 
IF Centered 
At 1/T Demux I I~Downconverted Q Data 

I 

Con t ro I 4/T Clock 
Input Unit 

I I 

Fig. 8.3 Simple Downconversion Unit 

8.6 Simulation with BOSS, SPW, ... 

It would be a good idea to use BOSS or SPW to generate test 

vectors to be used as inputs to the system. These packages have ready-made 

modules that can be used to generate the proper signals with noise. Then the 

performance can be compared to the SPW simulation. 



Appendix A Generator Code 
A.0 Contents 

A template for writing code for generators is offered in section A.l. 

This template shows an outline of how the generators were developed for this 

project. The sections following this template present the code for each individual 

generator. 

The generator code was written in Lx. Lx is a procedural interface to 

the L database and Led graphics editor. It is built from a set of database interface 

functions and from general purpose language called GENIE. Lx provides access 

to the information within the L database and provides interaction with the Led 

graphis editor. 

A.1 Code Template for a Generator 

This is an example of a template that can be used in developing generators. In 

order to get a better grasp as to what is going on, the Lx manual should be 

consulted before reading this code. 

func gen ((int a b)(string c d)(float e 13) { Define the function. 

int g hVariable assignment. 

fluat i j 

list save Define the list that the cells will be appended to. 

abstract LidA B C Define the Lids. 

/read cellA Read in the cells 

118 



Appendix A: Generator Code 119 

/read cellB that will be used in 

lread cellC the generator. 

A = (set_ce// cellA) Assign the Lids to 

B = (set_cel/ celIl3) a cell. 

C = (set-celi cellC) 

The algorithm for placement of the cells should be placed here. The 

algorithm can be implemented using logical statements such as FOR, IF 

and CASE. To create an array of cells, the append statement is used. 

append @save A 

This appends the cell A to a list called save. The next cell that is appended 

to the list will be connected to the cell A. Once the algorithm part is 

finished, end the function with a "}" 

1 
After this is written, the file should be saved as gen.m. To run this program, go to 

the command prompt in Led and type: 

load gen.m 

gen 1 2 hello goodbye 1.0 2.0 

The parameters after gen need to match the types that are specified in the func 

statement. The generator will then read in the cells and place them according to 

some algorithm. 

A.2 Adder Generator Code 

This is the Lx code for the layout of the adder. The adder is a ripple carry adder 

that is designed using the transmission gate adder cell. User specifications are: 1 .) 

size = n, for an n bit adder. 2.) name of the adder cell. 



Appendix A: Generator Code 1 20 

Beginning of Program 

func adder ((int size)(string name)) { 

Declarations 

string b a c 
int i count k check div 
list 1st 
abstract Lid up down ad source sinc upflip downflip t source2 sinc sinc2 
if((@size % 2) == 0) { 
div = (@size / 2) 
} else { 
div = ((@size + 1) / 2) 
1 

Initialization of variables and assignment of abstract Lids to layout cells 

check = 0 
count = 0 
lread adup.L 
lread adupf1ip.L 
lread add0wn.L 
lread addownflip. L 

up = (setcell adup) 
upflip = (set-cell adupflip) 
down = (setcell addown) 
downflip = (set-cell addownflip) 

1st = '0 

Start a new layout cell called name 

se t-cel I j d  (add-ce I I @ LAY 0 UT @name) 

Append the top set of cells 

for(i = 0; @i e @div; i++) { 
if((@ % 2) == 0) { 
append 1st @up 
} else { 
append 1st @upflip 

Append the bottom set of cells 



Appendix A: Generator Code 121 

for(i = 0; @i @div; i++) { 
if((@i % 2) == 0) { 
append 1st @down 
1 else { 
append 1st @downflip 

Create the layout 

ad = (add-array @Ist 2 @div) 

Add wires and top level connectors 

Wire bottom carry lines 

if((@div % 2) == 0) { 
for(i = 0; @i e @div; i += 2) { 
source = (make-target outO @ad 1 @i) 
sinc = (make-target in0 @ad 1 (@i + 1)) 
add-wire @source @sinc (get-named-type MET2) (bld (make-seg \ 
@HOR 13.35)(make_seg @VER O.O)(make-seg @HOR 0.0)) 

} else { 
for(i = 0; @i c (@div - 1); i += 2) { 
source = (make-target out0 @ad 1 @i) 
sinc = (make-target in0 @ad 1 (@i + 1)) 
add-wire @source @sinc (get-named-type MET2) (bld (make-seg \ 
QHOR 13.35)(make-seg @VER O.O)(make-seg @HOR 0.0)) 

1 

1 
1 
if(@size >= 6) { 

Wire top carry lines 

if(@size == 6) { k = 1 } 
if(@size == 8) { k = 1 } 
if(@size == 10) { k = 2 } 
if(@size == 12) { k = 2 )  
if(@size == 14) { k = 3 } 
if(@size == 16) { k = 3 } 
for(\ = 0; @i e (@k * 2); i += 2) { 
source = (make-target outO @ad 0 (@i + 1)) 
sinc = (make-target in0 @ad 0 (@i + 2)) 



Appendix A: Generator Code 122 

add-wire @source @sinc (get-named-type MET2) (bld (make-seg \ 
@VER 2.4)(make-seg @HOR 57.4)(make-seg QVER -2.4)) 
1 
1 

Add top level connectors to the top set of inputs 

for(i = 0; @i c @div; i++) { 

if((@i % 2) == 0) { 

} else { 

1 
b = (cat "b[,, @count "1") 
a = (cat "ar @count "]") 
count += 1 
source = (make-target B @ad @k @i) 
source2 = (make-target A @ad @k @i) 
t = (add-terminal (get-named-type IN) (get-named-type METl) (get-loc 
@source) @RO 0 @source @b) 
t = (add-terminal (get-named-type IN) (get-named-type MET1) (get-loc 
@source2) @RO 0 @source2 @a) 
1 

k=O 

count = (@i * 2) 

count = ((@i * 2) + 1) 

Add top level connectors to the bottom set of inputs 

for(i = 0; @i c @div; i++) { 

if((@i % 2) == 0) { 
count = ((@i * 2) + 1) 
} else { 
count = ((@i * 2)) 
1 
b = (cat "b[ll @count "1") 
a = (cat "a[,, @count 7") 
count += 1 
source = (make-target B @ad @k @i) 
source2 = (make-target A @ad @k @i) 
t = (add-terminal (get-named-type IN) (get-named-type MET1) (get-loc 
@source) @RO 0 @source @b) 
t = (add-terminal (get-named-type IN) (get-named-type METI) (get-loc 
@source2) @RO 0 @source2 @a) 
1 

k = l  

Add top level connectors to the outputs 



Appendix A: Generator Code 123 

count = 0 
for(i = 0; @i @div; i++) { 
b = (cat "s[" @count 7") 
count += 1 
a = (cat "sr @count "3") 
count += 1 
source = (make-target SO @ad 0 @i) 
source2 = (make-target SI @ad 0 @i) 
t = (add-terminal (get-named-type OUT) (getnamed-type MET2) (get-loc 
@source) @RO 0 @source @b) 
t = (add-terminal (get-named-type OUT) (get-named-type MET2) (get-loc 
@source2) @RO 0 @source2 @a) 
1 
Add top level connector for Cin input 

b = "cin[O]" 
source = (make-target in0 @ad 0 0) 
t = (add-terminal (get-named-type IN) (get-named-type MET2) (get-loc 
@source) @RO 0 @source Ob) 

if((@div % 2) == 0) { 
b = (cat 'Is[,, @size "1'') 
source = (make-target outO @ad 0 (@div - 1)) 
t = (add-terminal (get-named-type OUT) (get-named-type MET2) (get-loc 
@source) @RO 0 @source @b) 
} else { 
b = (cat "sr @size "1") 
source = (make-target outO @ad 1 (@div - 1)) 
t = (add-terminal (get-named-type OUT) (get-named-type MET2) (get-loc 
@source) @RO 0 @source @b) 
1 

if((@div % 2) == 0) { 
source = (make-target out2 @ad 0 (@div - 1)) 
sinc = (make-target out5 @ad 1 (@div - 1)) 
add-wire @source @sine (get-named-type MET3) (bld (make-seg \ 
@HOR 3.4)(make-seg OVER -23.6)(make-seg @HOR -3.4)) 
t = (add-terminal (get-named-type VDD) (get-named-type MET3) (get-loc 
@source) @RO 0 @source) 

Wire the Vdd and GND lines and add the top level terminals 

source = (make-target in3 @ad 0 0) 
sinc = (make-target in5 @ad 0 0) 



Appendix A: Generator Code 1 24 

add-wire @source @sinc (get-named-type MET3) (bld (make-seg \ 
QHOR -3.4)(rnakeWseg @VER -20.0)(make-seg @HOR 3.4)) 
t = (add-terminal (get-named-type GND) (get-named-type MET3) (get-loc 
@sinc) @RO 0 @sinc) 
source = (make-target in5 @ad 1 0) 
add-wire @source @sinc (get-named-type MET3) (bld (make-seg \ 
QHOR -3.4)(make-seg @VER 23.6)(make-seg @HOR 3.4)) 
] else { 
source = (make-target out1 @ad 0 (@div - 1)) 
sinc = (make-target out3 @ad 1 (@div - 1)) 
add-wire @source @sinc (get-named-type MET3) (bld (make-seg \ 
@HOR 3.4)(makemseg @VER -23.6)(make-seg @HOR -3.4)) 
t = (add-terminal (get-named-type VDD) (getnamed-type MET3) (get-loc 
@source) @RO 0 @source) 
source = (make-target in3 @ad 0 0) 
sinc = (make-target in5 @ad 0 0) 
add-wire @source @sinc (get-named-type MET3) (bld (make-seg \ 
@HOR -3.4)(make-seg @VER -20.0)(makeVseg @HOR 3.4)) 
t = (add-terminal (get-named-type GND) (get-named-type MET3) (get-loc 
@sinc) @RO 0 @sinc) 
source = (make-target in5 @ad 1 0) 
add-wire @source @sinc (get-named-type MET3) (bld (make-seg \ 
@HOR -3.4)(make-seg @VER 23.6)(makeVseg @HOR 3.4)) 
1 

A.3 Multiplier Generator Code 

This is the Lx code for the layout of the multiplier. The multiplier is 

constructed following the BoughNVooley algorithm. It is a 2's compliment 

multiplier. 

be modified to generate m by n multipliers. User specifications are: 

1 .) size = n, for an n by n multiplier. 

2.) name of the multiplier cell. 

Beginning of Program 

func mult ((int size)(string name)) { 

Declarations 



Appendix A: Generator Code 125 

list 1st 
int i j count tmp piper tmpl 
string a b 
abstract Lid space a1 a2 a3 a4 m l  m2 m3 m4 m5 x mult 
abstract Lid source sinc source2 sinc2 t p psl pst 

Read in the cells 

lread pipe.L 
lread pipesidel .L 
lread pipesidet0p.L 
I read m ul t-cell- L 
I read mu I t2-celI. L 
lread mult3-ce1l.L 
I read mu I t4-cell. L 
I read mult5-cell. L 
lread and-ce1l.L 
lread and2-ce1l.L 
lread and3-ce1l.L 
lread and4-ce1l.L 
lread mu1 t-space. L 
lread xorp1usor.L 

Initialize the variables and assign abstract Lids to layout cells 

1st = ‘0 
piper = 5 
p = (set-cell pipe) 
psl = (set-cell pipeside) 
pst = (set-cell pipetop) 
m l  = (set-cell mult) 
m2 = (setcell mult2) 
m3 = (setcell mult3) 
m4 = (set-cell mult4) 
m5 = (set-cell mult5) 
a1 = (set-cell and) 
a2 = (setcell and2) 
a3 = (set-cell and3) 
a4 = (set-cell and4) 
x = (set-cell xorplusor-L) 
space = (setcell mult-space) 

Start a new layout cell and call it name 

se t-ce I I-i d (add-ce I I @ LAY0 UT ’I@ name”) 



Appendix A: Generator Code 1 26 

Begin placing the cells 

append 1st @space 
for(i = 0; @i e (@size - 1); i++) { 

1 
for(i = 0; @i e (@size - 1); i++) { 

append 1st @a4 

if(@ == @piper) { append 1st @pst 
} else { 

if(@ > @piper) { 

else { 1 

1 
for(j = 0; @j e (@size - 1); j++) { 

if(@ == @piper) { 

} else { 

1 

append 1st @psi 

append 1st @a1 } 

append 1st @p 

append 1st @ml } 

1 
append 1st @x 
for(i = 0; @i e (@size - 1); i++) { 

append 1st @m2 
1 
append 1st @m4 
for(i = 0; @i e (@size - 2); i++) { 
append 1st @m3 
1 
append 1st @m5 

Create a layout of the multiplier 

mult = (add-array @Ist (@size + 2) @size) 

Wire the Vdd and GND terminals and place top level connectors for Vdd, 
GND, Inputs and Outputs. 

Wire vdd and gnds 

source = (make-target vddl @mult 0 (@size - 1)) 
source2 = (make-target gndO @mu& 0 (@size - 1)) 
t = (add-terminal (get-named-type VDD) (getnamed-type MET3) (get-Ioc 
@source) @RO 0 @source) 
t = (add-terminal (get-named-type GND) (get-named-type MET3) (get-loc 



Appendix A: Generator Code 1 27 

@source2) 
@RO 0 @source2) 

count = 1 
for(i = 0; @i c (@size - 1); i ++) { 
source = (make-target vddl @mult @count (@size - 1)) 
source2 = (make-target gndl @mult @count (@size - 1)) 
t = (add-terminal (get-named-type VDD) (getnamed-type MET3) (get-loc 
@source) @RO 0 @source) 
t = (add-terminal (get-named-type GND) (get-named-type MET3) (get-loc 
@sou rce2) 
@RO 0 @source2) 
count += 1 
I 
Add top level connectors for Vdd and GND 

source = (make-target vddl @mult (@size) (@size - 1)) 
source2 = (make-target gndO @mult (@size) (@size - 1)) 
t = (add-terminal (getnamed-type VDD) (get-named-type MET3) (get-ioc 
@source) @RO 0 @source) 
t = (add-terminal (get-named-type GND) (get-named-type MET3) (get-ioc 
@source2) @RO 0 @source2) 

Add terminals to the clock inputs 

a = "clkin" 

source = (make-target clkin @mult (@piper + 1) 0) 
source2 = (make-target clkout @mult (@piper + 1) (@size - 1)) 
t = (add-terminal (get-named-type IN) (get-named-type MET2) (get-loc 
@source) @RO 0 @source @a) 
t = (add-terminal (get-named-type OUT) (getnamed-type MET2) (get-loc 
@source2) @RO 0 @source2 @b) 

b = "clkout" 

count = 0 

Add terminals to the inputs 

tmp = (@size - 1) 
a = (cat "x[" @tmp "1") 
b = (cat It,[,, @count ''17 
source = (make-target in3 @mult 0 0) 
source2 = (make-target in4 @mutt 0 0) 
t = (add-terminal (get-named-type IN) (get-named-type MET2) (get-loc 
@source) @RO 0 @source @a) 



Appendix A: Generator Code 128 

t = (add-terminal (get-named-type IN) (get-named-type MET1 ) (get-loc 
@source2) @RO 0 @source2 @b) 

count = 1 
for(i = 0; @i < (@size - 1); i ++) { 
tmp = (@size - 1 - @count) 
a = (cat 'I,[,, @tmp ''1'7 
source = (make-target in0 @mult 0 @count) 
t = (add-terminal (get-named-type IN) (get-named-type MET2) (get-loc 
@source) @RO 0 @source @a) 
count += 1 
1 
count = 1 
for(i = 0; @i e (@size - 2); i ++) { 
b = (cat "y[" @count "1") 
source = (make-target in4 @mult @count 0) 
t = (add-terminal (get-named-type IN) (get-named-type M ET2) (get-loc 
@source) @RO 0 @source @b) 
if(@ == (@piper - 1)) { count += 1) 
count += 1 
1 
count = (@size) 
b = (cat 'ly[" @count "1") 
source2 = (make-target b @mult (@size) 0) 
t = (add-terminal (get-named-type IN) (get-named-type MET1) (get-loc 
@source2) @RO 0 @source2 @b) 

Add terminals to the outputs 

count = 1 
for(i = ((2 * @size) - 3); @i > (@size - 2); i--) { 
tmpl =@i 
if(@ == (@size - 1)) { tmpl = (@size - 1)) 
b = (cat "p[,, @tmpl "1") 
source = (make-target SO @mult (@size + 1) @count) 
t = (add-terminal (get-named-type OUT) (get-named-type MET2) (get-loc 
@source) @RO 0 @source @b) 
count += 1 

tmp = ((2 * @size) - 1) 
b = (cat "py @tmp "I") 
tmp = ((2 * @size) - 2) 
a = (cat "pr @tmp "I") 
source2 = (make-target out7 @mult (@size + 1) 0) 
source = (make-target SO @mult (@size + 1) 0) 
t = (add-terminal (get-named-type OUT) (get-named-type MET1 ) (get-loc 



Appendix A: Generator Code 129 

@source2) @RO 0 @source2 @b) 
t = (add-terminal (get-named-type OUT) (getnamed-type MET2) (get-loc 
@source) @RO 0 @source @a) 

A.4 Read ROM Array Cells 

This code is loaded in by the ROM generator. It will allow this 

generator to read in the cells needed for the ROM array. 

func read-rom { 
lread rom-1 st-beginspace2-L 
lread rom-n load-down-tranc-L 
lread rom-n load-down-t r a n 4  
iread rom-end-t ran-L 
lread r0rng-up-L 
I read romj-u p-s pace-L 
lread rom-p-down-L 
I read romj-dow n-space-L 
lread rom-fbs-L 
lread rom-lbs-L 
lread rom-bs-L 
lread rom-1 stgnd-down-L 
lread rom-lastgnd-down-L 
lread rom 1 stend-L 
lread rom-1 st-beginspace-L 
lread romlastend-L 
I read r om-lastbeg i ns pace-L 
lread rom-lastbeginspace2-L 
lread rom-1 stgnd-up-L 
lread rom-1 stgnd-middle-L 
I read rom-lastg n d-u p-L 
lread rom-lastgnd-middle-L 
lread rom-begin-space-L 
lread rom-begin-space2-L 
lread romend-L 
I read 
lread romgnd-middle-L 
lread romgnd-down-L 
lread up-notranl-L 
lread up-tran 1 -L 
I read down-not ran-nocon tact 1 -L 
lread down-notran-contact1 -L 
lread down-tran1 -L 



Appendix A: Generator Code 130 

1 

A.5 Read Row Decoder Cells 

This code is loaded in by the ROM generator. It will allow this 

generator to read in the cells needed for the row decoder. 

func read-dec { 
I read d e c g  rid-beg i n-L 
I read d e c g  n d-midd le-L 
lread decgnd-end-L 
lread dec-tran-Iongalonel -L 
lread dec-tran-longalone2-L 
I read dec-t ran-long pol y-L 
lread dec-t r an-sh tpol y-L 
I read dec-t ran-long pol y-m i dd le 1 -L 
lread dec~tran~longpoly~middle2~L 
I read dec-t r an-a1one-L 
lread dec-2-L 
lread dec-22-L 
lread dec-notran-L 

A.6 ROM Array Generator Code 

Beginning of Program 

func rom (int I w word-size num-blocks) { 

Declarations 

list 1st lst2 
list sav lst3 re 
int i j a b k count counter strap check check2 h count2 
int top place times read-data mult tmpl tmp2 cnt div 
float inc x y 
float pi time1 time2 
string aa bb 
file fp 



Appendix A: Generator Code 131 

abstract Lid z td-nt-nc q 
abstract Lid td-ntc td-t 
abstract Lid tu-nt tu-t 
abstract Lid bf bf-out 
abstract Lid gnddown gndup gndmiddle end 
abstract Lid beginspace beginspace2 firstgndup firstgndmiddle 
abstract Lid lastgndup lastgndmiddle 
abstract Lid f i rstbeg ins pace fi rstbegi nspace2 first 
abstract Lid lastbeginspace lastbeginspace2 last lastgnddown 
abstract Lid firstgnddown 
abstract Lid pass-up pass-down a f te r ju  spacer-up 
abstract Lid empty-up empty-down spacer-down fes les es 
abstract Lid pass-up-nc pass-down-nc spacer-up-c after-pu-c 
abstract Lid p-up-space p-up p-down p-down-space 
abstract Lid fbs Ibs bs pass fbs2 bs2 lbs2 
abstract Lid source source2 sinc sinc2 t 
abstract Lid loadup loaddown loaddownc loadupsp loaddownsp 

Assign cells to abstract Lids 

loaddown = (set-cell rom-nload-down-tran-L) 
loadd ow nc = (set-cel I rom-n load-dow n-t ranc-L) 
pass = (setcell rom-end-tran-L) 
fbs = (setcell rom-fbs-L) 
bs = (set-cell rom-bs-L) 
Ibs = (setcell rom-lbs-L) 
p-up = (setcell romj-up-L) 
p-down = (set-cell rom-p-down-L) 
p-up-space = (set-cell romg-up-space-L) 
p-down-s pace = (setcel I romj-dow n-s pace-L) 
firstgnddown = (set-cell rom-1 st_gnd-down-L) 
lastgnddown = (set-cell rom-last_gnd-down-L) 
firstbeginspace = (set-cell rom-1 st-beginspace-L) 
fi rstbeg i nspace2 = (set-cell rom-1 st-beg i nspace2-1) 
first = (set-cell romlstend-L) 
last beg i nspace = (setcel I rom-last-beg i nspace-L) 
lastbeginspacer! = (setcell rom-last-beginspace2-L) 
last = (set-cell romlastend-L) 
firstgndup = (set-cell rom-1 stsnd-up-L) 
f i rs tg nd m idd le = (se t-ce I I ro m-1 s t s n  d-mi dd le-L) 
las tg nd u p = (se t-cell ro m-las t a  nd-u p-L) 
las tg ndm idd le = (set-cel I rom-las t a  nd-m i dd le-L) 
beginspace = (set-cell rom-begin-space-L) 
beginspace2 = (set-cell rom-begin-space2-1) 
end = (set-cell romend-L) 
gndup = (set-cell romgnd-up-L) 



Appendix A: Generator Code 132 

g nd m i dd le = (setcel I r o m g  n d-mi dd le-L) 
gnddown = (setcell rom_gnd-down-L) 
td-nt-c = (setcell down-notran-contact1 -L) 
td-t = (setcell down-tranl-L) 
td-nt-nc = (setcell down-notran-nocontactl- 
tu-nt = (setcell up-notranl-L) 
tu-t = (setcell up-tranl-L) 

Define a new Layout cell 

setce l l jd  (add-cell @LAYOUT roml) 

Initialize variables 

check = 0 
div = 1 
check2 = 0 
strap = 10 
count = 0 
counter = 0 
mult = 0 
tmpl = O  
tmp2 = 0 
1st = () 
lst3 = () 
lst2 = ' () 
sav = '() 
re = '() 
x = 0.0 

a = l  
y = 0.0 

b = O  
top = 0 
place = @w 
times = 1 
for(i = 0; @i e @w; i++) { 
append sav @a 
1 
fp = (fopen nco-rom.dat r) 
for(i = 0; @i c (@w * @ I ) ;  i++) { 
fscanf @fp "%d" read-data 
append re @read-data 
if((@ % 100) == 0) { 
println @i 
3 



Appendix A: Generator Code 133 

1 
Place the load transistors 

for(h = 0; @h c 1; h++) { 
append 1st @firstbeginspace2 
for(k = 1 ; @k C= @w; k++) { 
if((@k % 2) == 0) { 
append 1st @loaddownc 
} else { 
append 1st @loaddown } 
if(@k @w) 
if((@k % @strap) == 0) { 
append 1st @beginspace2 } 
1 
1 
append 1st @lastbeginspace2 
1 
Place the precharge transistors. 

for(h = 0; @h c 2; h++) { 
if((@h % 2) == 0) { 
append 1st @fbs 
for(k = 1; @k <= @w; k++) { 
if((@k % 2) == 0) { 
append 1st @p-up,space 
} else { 
append 1st @P-UP 1 
if(@k < @w) { 
if((@k % @strap) == 0) { 
append 1st @bs } 
1 
1 
append 1st @Ibs 
} else { 
append 1st @firstbeginspace 
for(k = 1 ; @k C= @w; k++) { 
if((@k % 2) == 0) { 
append 1st @p-down 
} else { 
append 1st @p-down-space } 

if((@k % @strap) == 0) { 
append 1st @beginspace } 

if(@k c @w) { 

1 



Appendix A: Generator Code 134 

1 
append 1st @lastbeginspace 

Start placing the mem trans 

for(k = 0; @k e 1; k++) { 
for(i = 0; @i c @I; i++) { 
println @i 
if(@k == 0) { 
if(@top == 0) { 
if(@ == 0) { 

append 1st Qfirstgndup 
} else { append 1st Qfirstgndmiddle} 
} else { append 1st @firstgnddown } 
1 

times = (@w * @i) 
count = 0 
for(j = 0; @j e @w; j++) { 
count += 1 
if(@re[(@j + @times)] == 0) { 
if(@top == 0) { append 1st @tdJ 
} else { append 1st @tu-t } 
place += 1 
append sav @b 
} else { 
if(@top == 0) { 
if((@sav[(@place - @w)]) == 0) { 

} else { append 1st @td-nt-nc } 
} else { append 1st @tu-nt } 
place += 1 
append sav @a 
1 
if(@count e @w) { 
if((@count % @strap) == 0) { 
if(@check == 0) { 
counter++ 
1 
if(@top == 0) { 
if(@ == 0) { 

} else {append 1st @gndmiddle } 

append 1st @td-ntc 

append 1st @gndup 



Appendix A: Generator Code 135 

} else { append 1st egnddown } 
1 
1 
1 
check = 1 
count = 0 
if(@k c 0) { 
if(@top == 0) { 
if(@ == 0) { 
append 1st @gndup 
} else {append 1st @gndmiddle } 
} else { append 1st egnddown } 
1 
if(@k == 0) { 
if(@top == 0) { 
if(@i == 0) { 
append 1st @lastgndup 
} else {append 1st @lastgndmiddle } 
} else { append 1st @lastgnddown } 
1 
if(@top == 1) { 
top = 0 
} else { top = I} 
1 '  
1 
count = 0 
mult = 0 
append 1st @first 
for(k = 1 ; @k C= @w; k++) { 
append 1st @pass 
count += 1 
if((@count % @strap) == 0) { 
count = 0 
if(@mult @counter) { 
append 1st @end } 
mult ++ 
1 
1 
append 1st @last 
println @count 
println @mult 
println @counter 

Create the layout of the ROM array 

z = (add-array @Ist (@I + 4) (@w + @counter + 2) (bid @x @y) @BO) 



Appendix A: Generator Code 136 

Terminals for VDD and GND 

count = 0 
source = (make-target in2 @z 0 0) 
source2 = (make-target in4 @z 2 0) 
t = (add-terminal (get-named-type VDD) (getnamed-type MET2) (get-loc 
@source) @RO 0 @source) 
t = (add-terminal (get-named-type GND) (get-named-type MET2) (get-loc 
@source2) @RO 0 @source2) 
source = (make-target in2 @z 2 0) 
t = (add-terminal (get-named-type VDD) (getnamed-type MET2) (get-loc 
@source) @RO 0 @source) 

source = (make-target in6 @z 2 0) 
aa = "rom-clk" 
t = (add-terminal (get-named-type IN) (get-named-type MET1) (get-loc 
@source) @RO 0 @source @aa) 

Terninals for inputs 

count = 1 
for(i = 0; @i e (@I / 2); i++) { 
aa = (cat I'romin[" @count "I") 
count += 1 
source = (make-target in2 @z (@count + 1) 0) 
t = (add-terminal (get-namedtype IN) (get-named-type MET21 (get-loc 
@source) @RO 0 @source @aa) 
bb = (cat "rom-in[" @count "17 
count += 1 
source2 = (make-target in1 @z (@count + 1) 0) 
t = (add-terminal (get-named-type IN) (get-named-type MET2) (get-loc 
@source2) @RO 0 @source2 @bb) 
1 
count2 = 1 
count = 1 
cnt = 1 
for(j = 0; @j c @num-blocks; j++) { 
for(i = 0; @i c (@word-size); i++) { 
aa = (cat "rom-out[" @count2 "1") 
source = (make-target out1 @z (@I + 3) @count) 
t = (add-terminal (get-named-type IN) (get-named-type MET1 ) (get-loc 
@source) @RO 0 @source @aa) 
if((@cnt % @strap) == 0) { 
count += 1 



Appendix A: Generator Code 137 

I 
cnt += 1 
count += 1 
count2 += 1 
1 
1 
count2 = 1 
source = (make-target in3 @z (@I + 3) 0) 
aa = (cat "coldec-in[" @count2 "I,,) 
t = (add-terminal (get-named-type IN) (get-named-type POLY) (get-loc 
@source) @RO 0 @source @aa) 

count = 1 
for(i = 1 ; @i < (@num-blocks * @div); i++) { 
count2 = (@count + 1) 
aa = (cat "coldec-inE" @count2 7") 
source = (make-target in2 @z (@I + 3) ((@strap + 1) * @count)) 
t = (add-terminal (get-named-type IN) (get-named-type POLY) (get-loc 
@source) @RO 0 @source @aa) 
count += 1 
1 

fclose @fp 
I 

A.7 Row Decoder Generator Code 

Beginning of program 

func dc ((int in rows flip)(float xx yy)) { 

Declarations 

int top col row integ k incr tran save-inc 
int tmp count count2 a b i x 
string aa bb 
list 1st sav compare 
abstract Lid zz long short alone dc2 leftbuf rightbuf 
abstract Lid dcl notran longalone begin middle end 
abstract Lid longalonel longalone2 long-middle1 long-middle2 



Appendix A: Generator Code 138 

abstract Lid cktl ckt2 ckt3 buf-end buf-begin bu 
abstract Lid buf-last sht 
abstract Lid source source2 sinc sinc2 t 
begin = (setcell decgnd-begin-L) 
middle = (setcell dec_gnd-middle-L) 
end = (setcell decgnd-end-L) 
Iongalonel = (set-cell dec-tran-longalonel-L) 
longalone2 = (setcell dec-tran-longalone2-L) 
long = (setcell dec-tran-longpoly-L) 
s h t = (set-cel I dec-t ran-s h tpol y-L) 
long-middle1 = (setcell dec-tran-longpoly-middlel-L) 
long-m i dd le2 = (setcel I dec-t ran-long PO l y-m i dd le2-L) 
alone = (se t-ce I I dec-t ran-al one-L) 
dcl = (set-cell dec-2-L) 
dc2 = (set-cell dec-22-L) 
notran = (set-cell dec-notran-L) 

Start a new layout cell 

setcell-id (add-cell @LAYOUT dec) 

Initialization of variables 

top = 0 
1st = ' () 
sav = ' () 
compare = ' () 
a = l  
b = O  
incr = 1 
x = o  
count2 = 0 
count = 0 
for(k = 0; @k e @in; ++k) { incr *= 2 } 
save-inc = @incr 
for(k=O; @k e (@in - 1); ++k) { 
append compare (@save-inc / 4) 
save-inc /= 2 
1 
Place the beginning, middle or end transistors 

for(row = 1 ; @row <= (@rows / 2); row++) { 
println @row 
if(@row == 1) { 



Appendix A: Generator Code 139 

append 1st @begin 
1 
if(@row == (@rows / 2)) { 
append 1st @end 
1 
if(@row > 1) { 
if(@row e (@rows / 2)) { 
append 1st @middle 
1 
1 
tmp = @count 

Create the address table 

sav = '() 
for(col = 0; @eo/ e (@in - 1); coI++) { 

if((@tmp % 2) == 1) { 
prepend sav @a 
} else { prepend sav @b } 
tmp = (trunc(@tmp / 2)) 
1 

Place the decoder transistors 

count += 1 
for(i = 0; @i e (@in - 1); i++) { 
if(@sav[@i] == 0) { 
if((@i % 2) == 1) { 
if((@row % @compare[@i]) == 0) { 
if(@compare[@i] == 1) { 
append 1st @alone 
append 1st @notran 
} else { 
append 1st @tongalonel 
append 1st @notran } 
} else { 
if(((@compare[@i] - @row - 2) % 4) == 0) { 
append 1st @Iong-middle:! 
append 1st @notran 
} else { 
if(@row == 1) { 
append 1st @sht 
append 1st @notran 
} else { 
append 1st @long 



Appendix A: Generator Code 140 

append 1st @notran 
1 
1 
1 
} else { 
if((@row % @compare[@i]) == 0) { 
if(@compare[@i] == 1) { 
append 1st @notran 
append 1st @alone 
} else { 
append 1st @notran 
append 1st @Iongalonel} 
} else { 
if(((@compare[@i] - @row - 2) % 4) == 0) { 
append 1st @notran 
append 1st @long-middle1 
} else { 
if(@row == 1) { 
append 1st @notran 
append 1st @sht 
} else { 
append 1st @notran 
append 1st @long 
1 
1 
1 
1 
} else { 
if((@i % 2) == 1) { 
if((@row % @compare[@i])== 0) { 
if(@compare[@i] == 1) { 
append 1st @notran 
append 1st @alone 
} else { 
append 1st @notran 
append 1st @longalone2 } 
} else { 
if(((@compare[@i] - @row - 2) % 4) == 0) { 
append 1st @notran 
append 1st @long-middle1 
} else { 
if(@row == 1) { 
append 1st @notran 
append 1st @sht 
} else { 
append 1st @notran 



Appendix A: Generator Code 141 

append 1st @long 
1 
1 
1 
} else { 
if((@row % @compare[@i])== 0) { 
if(@compare[@i] == 1) { 
append 1st @alone 
append 1st @notran 
} else { 
append 1st @longalone2 
append 1st @notran } 
} else { 
if(((@compare[@i] - @row - 2) % 4) == 0) { 
append 1st @Iong_middle2 
append 1st @notran 
} else { 
if(@row == 1) { 
append 1st @sht 
append 1st @notran 
} else { 
append 1st @long 
append 1st @notran 
1 
1 
1 

1 
1 
if((@count % 2) == 0) { 
append 1st @dc2 
} else { append 1st @del } 
1 
Create the layout cell 

if(@flip == 0) { 
zz = (add-array @Ist ((@rows / 2) + 0) ((@in * 2)) (bid @XX @YY) @RO) 
} else { 
zz = (add-array @lst ((@incr / 2) + 0) ((@in * 2)) (bid @XX @YY) @R)o 1 

Place top level terminals 

count = 0 
source = (make-target out2 @zz ((@rows / 2) - 1) 0) 



Appendix A: Generator Code 1 42 

source2 = (make-target out0 @zz ((@rows / 2) - 1) ((@in * 2) - 1)) 
t = (add-terminal (get-named-type GND) (get-named-type MET1) (get-loc 
@source) @RO 0 @source) 
t = (add-terminal (get-named-type VDD) (get-named-type MET1 ) (get-loc 
@source2) @RO 0 @source2) 

source = (make-target in5 @zz 0 ((@in * 2) - 1)) 
aa = "clk-dec" 
t = (add-terminal (get-named-type IN) (get-named-type POLY) (get-loc 
@source) @RO 0 @source @aa) 

count = 1 
for(i = 1; @i e ((@in * 2) - 1); i++) { 
aa = (cat "in[" @i "1") 
source = (make-target out7 @zz ((@rows / 2) - 1) @i) 
t = (add-terminal (get-named-type IN) (get-named-type MET1) (get-loc 
@source) @RO 0 @source @aa) 
I 
count = ((@in * 2) - 1) 
aa = (cat "in[" @count ''17 
count = (@in * 2) 
bb = (cat ''in[" @count '7'') 
source = (make-target out6 @zz ((@rows / 2) - 1) ((@in * 2) - 1)) 
source2 = (make-target Out4 @zz ((@rows / 2) - 1) ((@in * 2) - I)) 
t = (add-terminal (get-named-type IN) (get-named-type POLY) (get-loc 
@source) @RO 0 @source @aa) 
t = (add-terminal (get-named-type IN) (get-named-type POLY) (get-loc 
@source2) @RO 0 @source2 @bb) 

count = 1 
for(i = 0; @i e (@rows / 2); i++) { 
aa = (cat "out[" @count 7'7 
count += 1 
bb = (cat "out[" @count ''1'7 
count += 1 
source = (make-target out2 @zz @i ((@in * 2) - 1)) 
source2 = (make-target out1 @zz @i ((@in * 2) - 1)) 
t = (add-terminal (get-named-type OUT) (get-named-type MET2) (get-loc 
@source) @RO 0 @source @aa) 
t = (add-terminal (get-named-type OUT) (get-named-type MET2) (get-loc 
@source2) @RO 0 @source2 @bb) 
I 

I 



Appendix A: Generator Code 143 

A.8 ROM generator 

Beginning of Program 

func romgen(int word-length numb-blocks rows)( 

Declarations 

int columns numb-bufs dec-in z i dummy j 
int bufcol flip count count2 cnt strap 
string aa bb cc dd 
float x y 
list buf Istl lst2 lst3 
strap = 8 
buf = '0 
lstl = '() 
lst2 = '() 
lst3 = '() 
flip = 0 
dec-in = 0 
abstract Lid buffer z buffer2 tog zz zzz 
abstract Lid source sinc bk bk2 bk3 t source2 
lread newrowdecbuf-L 

Load in the generators 

load read-dec.m 
load read-rom. m 
load r0wdec.m 
load rom3.m 

Assign a cetl to an abstract Lid 

buffer = (set-cell newrowdecbuf-L) 
columns = (@word-length * @numb-blocks) 
numb-bufs = (@rows / 4) 
dummy = 1 

Calculate certain parameters 



Appendix A: Generator Code 144 

for(i = 0; @dummy c @rows; i++) { 
dummy *= 2 
println @dummy 

println "done" 
for(i = (@dummy * 2); (@i - 2) != 0; (i /= 2)){ 
dec-in += 1 

println @dec-in 
for(i = 0; @i c @numb-bufs; i++) { 
append buf @buffer 

1 

1 

1 
Read in the cells for the row decoder and the ROM array 

read-d ec 
read-rom 

bufcol = 1 
x = 0.0 
y = 0.0 
println @dec-in 

Call the row decoder generator 

dc @dec-in @rows @flip @x @y 
zz = (set-cell dec) 
flip = 1 

Call the ROM array generator 

rom @rows @columns @word-length @numb-blocks 

zzz = (set-cell roml) 

Start a new layout cell 

setcell-id (add-cell @LAYOUT romgen) 

Assign the decoder to an instance and do some boundary calculations 

bk = (add-instance @zz '(0 0) @RO 0) 
Istl = (getbbox 0) 
println @Istl 



Appendix A: Generator Code 145 

lst2 = @Istl[l] 

x = @lst2[0] 
y = 5.4 

println @kt2 

Assign the row buffers to an Lid 

z = (add-array @buf (@numb-bufs) (@bufcol) (bld @x @y) @RO) 
lstl = (get-bbox 0) 
println @lstl 
lst2 = @Istl [l] 
println @lst2 
x = @Ist2[O] 
println @x 
y += 5.9 

Assign the ROM array to an Lid 

bk3 = (add-instance @zzz (bld @x @y) @RO 0) 
count = 0 
count2 = 0 

Wire the different components together and add top level connectors 

for(i = 0; @i e (@rows / 4); i ++) { 
count += 1 
aa = (cat "out[" @count ''1'') 
source = (make-target @aa @bk) 
sinc = (make-target in3 @z @i 0) 
add-wire @source @sinc (get-named-type METZ) (bld (make-seg \ 
@HOR O.O)(make-seg @VER O.O)(make-seg @HOR 0.0)) 
count += 1 
aa = (cat "out[" @count "1") 
source = (make-target @aa @bk) 
sinc = (make-target in1 @z @i 0) 
add-wire @source @sinc (get-named-type MET2) (bld (make-seg \ 
@HOR O.O)(make-seg @VER O.O)(make-seg @HOR 0.0)) 
count += 1 
aa = (cat "out[" @count ''1'7 
source = (make-target @aa @bk) 
sinc = (make-target in2 @z @i 0) 
add-wire @source @sinc (get-named-type MET2) (bld (make-seg \ 
@HOR O.O)(make-seg @VER O.O)(make-seg @HOR 0.0)) 
count += I 
aa = (cat "out[" @count "3") 
source = (make-target @aa @bk) 



Appendix A: Generator Code 146 

sinc = (make-target in4 @z @i 0) 
add-wire @source @sinc (getnamed-type MET2) (bld (make-seg \ 
@HOR O.O)(make-seg @VER O.O)(make-seg @HOR 0.0)) 
1 
count = 0 
count2 = 0 
for(i = 0; @i e (@rows / 4); i ++) { 
count += 1 
aa = (cat "rom-in[lt @count "1'') 
source = (make-target @aa @bk3) 
sinc = (make-target out1 @z @i 0) 
add-wire @source @sinc (get-named-type MET2) (bid (make-seg \ 
@HOR O.O)(make-seg @VER O.O)(make-seg @HOR 0.0)) 
count += 1 
aa = (cat "rom-in[" @count "1") 
source = (make-target @aa @bk3) 
sinc = (make-target Out3 @z @i 0) 
add-wire @source @sinc (get-named-type MET2) (bld (make-seg \ 
@HOR O.O)(make-seg @VER O.O)(make-seg @HOR 0.0)) 
count += 1 
aa = (cat "rom-in[" @count "1'7 
source = (make-target @aa @bk3) 
sinc = (make-target Out4 @z @i 0) 
add-wire @source @sinc (get-named-type MET2) (bld (make-seg \ 
@HOR O.O)(make-seg @VER O.O)(make-seg @HOR 0.0)) 
count += 1 
aa = (cat I'rom-in[lt @count ''1'') 
source = (make-target @aa @bk3) 
sinc = (make-target out2 @z @i 0) 
add-wire @source @sinc (get-named-type MET2) (bld (make-seg \ 
@HOR O.O)(make-seg @VER O.O)(make-seg @HOR 0.0)) 
1 
source = (make-target clk-dec @bk) 
aa = "clk-d" 
t = (add-terminal (get-named-type IN) (get-named-type POLY) (get-loc 
@source) @RO 0 @source @aa) 
source = (make-target rom-clk @bk3) 
aa = "clk-rom" 
t = (add-terminal (get-named-type IN) (get-named-type METI) (get-loc 
@source) @RO 0 @source @aa) 
source = (make-target gndO @bk) 
t = (add-terminal (get-named-type GND) (get-named-type METI) (get-loc 
@source) @RO 0 @source) 
source = (make-target gndO @bk3) 
t = (add-terminal (get-named-type GND) (get-named-type MET2) (get-loc 



Appendix A: Generator Code 1 47 

@source) @RO 0 @source) 
source = (make-target vddO @bk) 
aa = "clk-d" 
t = (add-terminal (get-named-type VDD) (getnamed-type MET1 ) (get-loc 
@source) @RO 0 @source) 
source = (make-target vddO @bk3) 
t = (add-terminal (get-named-type VDD) (getnamed-type MET2) (get-loc 
@source) @RO 0 @source) 
source = (make-target vddl @bk3) 
t = (add-terminal (get-named-type VDD) (get-named-type MET2) (get-loc 
@source) @RO 0 @source) 
source = (make-target gnd2 @z 0 0) 
aa = "clk-d" 
t = (add-terminal (get-named-type GND) (get-named-type METI) (get-loc 
@source) @RO 0 @source) 
source = (make-target vddO @z 0 0) 
t = (add-terminal (get-named-type VDD) (getnamed-type MET1 ) (get-loc 
@source) @RO 0 @source) 
source = (make-target gndO @z 0 0) 
t = (add-terminal (get-named-type GND) (get-named-type MET1 ) (get-loc 
@source) @RO 0 @source) 
@ dec-i n 
for(i = 1; @i e ((@dec-in * 2) - 1); i++) { 
aa = (cat "in[" @i "1'7 
bb = (cat "in-dec[" @i "1'7 
source = (make-target @aa @bk) 
t = (add-terminal (get-named-type IN) (get-named-type METI) (get-loc 
@source) @RO 0 @source @bb) 
1 
count = ((@dec-in * 2) - 1) 
aa = (cat "in[" @count "1") 
cc = (cat "in-dec[" @count 11]'1) 

count = (@dec-in * 2) 
bb = (cat "in[" @count ''1'') 
dd = (cat "in-dec[" @count ''1'7 
source = (make-target @aa @bk) 
source2 = (make-target @bb @bk) 
t = (add-terminal (get-named-type IN) (get-named-type POLY) (get-loc 
@source) @RO 0 @source @cc) 
t = (add-terminal (get-named-type IN) (get-named-type POLY) (get-loc 
@source2) @RO 0 @source2 @dd) 

count2 = 1 
count = 1 
cnt = 1 
for(j = 0; @j e @numb-blocks; j++) { 



Appendix A: Generator Code 148 

for(i = 0; @i e (@word-length); i++) { 
aa = (cat "rom-outr @count2 11]11 )  

bb = (cat "out-rom[" @count2 
source = (make-target @aa @bk3) 
t = (add-terminal (get-named-type IN) (get-named-type METI) (get-loc 
@source) @RO 0 @source @bb) 
if((@cnt % @strap) == 0) { 
count += 1 
I 
cnt += I 
count += 1 
count2 += 1 
I 
1 
count2 = 1 
aa = (cat "coldec-in[" @count2 7'*) 
bb = (cat "col-decin[" @count2 "I") 
source = (make-target @aa @bk3) 
t = (add-terminal (get-named-type IN) (get-named-type POLY) (get-loc 
@source) @RO 0 @source @bb) 

count = 1 
for(i = 1 ; @i e @numb-blocks; i++) { 
count2 = (@count + 1) 
aa = (cat "coldec-in[" @count2 "1") 
bb = (cat "col-decin[" @count2 7") 
source = (make-target @aa @bk3) 
t = (add-terminal (get-named-type IN) (get-named-type POLY) (get-loc 
@source) @RO 0 @source @bb) 
count += 1 
I 

1 

A.9 Serial Access Memory Generator Code 

This is the Lx code for the layout of the serial access memory. 
User specifications are: 
1 .) rows = n 
2.) columns = m 
3.) name of the SAM cell 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



- Appendix A: Generator Code 1 49 

Beginning of Program 

func smem ((int rows cols)(string name)) { 

Declarations 

string b a c d e 
int i j count k check div 
list 1st 
abstract Lid sml sm2 sm3 ac source sinc source2 sinc sinc2 
abstract Lid source3 source4 source5 
abstract Lid a1 a2 a3 

Initialization of variables and assignment of Lids to layout cells 

check = 0 
count = 0 
lread andl .L 
lread and2.L 
lread and3.L 
lread smeml .L 
lread smem2.L 
lread smem3.L 
1st = '0 
a1 = (set-cell andl) 
a2 = (setcell and2) 
a3 = (set-cell and3) 
sml = (setcell smeml) 
sm2 = (set-cell smem2) 
sm3 = (setcell smem3) 

Start a new layout cell called name 

setcell-id (add-cell @LAYOUT @name) 

for(j = 0; @j c @rows; j++) { 
if((@j % 2) == 0) { 

append 1st @a1 
} else { 
if(@j == (@rows - 1)) { 
append 1st @a3 
} else { append 1st @a2 } 
1 
for(i = 0; @i c @cols; i++) { 
if((@j % 2) == 0) { 
append 1st @sml 



Appendix A: Generator Code 150 

] else { 
if(@j == (@rows - 1)) { 
append 1st @sm3 
} else { append 1st @sm2 } 
1 
1 
1 
Create the layout 

ad = (add-array @Ist @rows (@cols + 1)) 

Add input and output top level terminals 

for(i = 0; @i e @rows; i ++) { 
a = (cat "din[" @i "1") 
b = (cat "dout[" @i "I") 
source = (make-target data-in @ad @i 0) 
source2 = (make-target data-out @ad @i (@cols)) 
t = (add-terminal (get-named-type IN) (get-named-type METI) (get-loc 
@source) @RO 0 @source @a) 
t = (add-terminal (get-named-type OUT) (getnamed-type MET1 ) (get-loc 
@source2) @RO 0 @source2 @b) 

Add Vdd and GND top level terminals 

source = (make-target in3 @ad 0 1) 
source2 = (make-target in2 @ad 0 1) 
t = (add-terminal (get-named-type VDD) (getnamed-type MET3) (get-loc 
@source) @RO 0 @source) 
t = (add-terminal (get-named-type GND) (get-named-type MET3) (get-loc 
@source2) @RO 0 @source2) 

a = (cat "res") 
b = (cat "clk") 
source = (make-target res @ad (@rows - 1) 0) 
source2 = (make-target clk @ad (@rows - 1) 1) 
t = (add-terminal (get-named-type IN) (get-named-type MET3) (get-loc 
@source) @RO 0 @source @a) 
t = (add-terminal (get-named-type IN) (get-named-type MET3) (get-loc 
@source2) @RO 0 @source2 @b) 
1 



Appendix B ~ i c r o ~ o u t e  Tips 
B.0 Introduction 

MicroRoute is a very powerful tool created by Mentor Graphics. It will take 

a netlist and a block list of a design and wire everything automatically. This 

appendix is filled with hints on what to do to get a design ready to be used by M.R. 

B.1 Steps Before MicroRoute 

1 .) Use Led to create the layout cells needed for the component. 

2.) The input to MicroRoute is the bounding box information of the layouts (the 

outer boundaries of each of the metal layers for routing purposes). In order 

to obtain this, run the following program on each of your layout cells: 

Lc -B 1ayoutcell.L > layout-cell.LL 

The “>lrwill re-direct the output into the file layout-cell.LL. If you do not do 

this, Lc will 

over write your cell with bounding box information and you will loose all 

layout information. 

3.) Enter Led and create a new Schematic cell. Call all of the .LL files in as 

instances. Wire the entire layout by hand with schematic wires. This is 

used to create a netlist for 

151 



Appendix €3: MicroRoute Tips 152 

0 

4b 

- 
- 

MicroRoute. Input, output, GND and Vdd terminals should also be placed 

as top level connectors. These connectors will be used to connect other 

MicroRouted components to this one. Ofcourse the connectors will be in 

the schematic level which will need to be changed later on. 

m 

db 

New Component " 

0 

- 

Vdd 
L 

Fig. B.1 Placement c Top Level Connectors 

Once you are finished wiring, save the layout as layout.LL for example. 

4.) Convert the layout.LL file into a file that MicroRoute can read: 

LtoUPR -A mr -t cmos26 -B block.upr -N net.upr -c layout.LL 

Now a block file and a net file is all that is needed to start MicroRoute. After 

this step is accomplished with no errors, then you need to edit your block 

file. Because MicroRoute does not understand the schematic level input 

and output terminals, you must edit the 

block file to change the input and output terminals that you placed in the 

schematic wiring session. Do a search for LEV. You will see a line similar to 

the following: 



Appendix 9: MicroRoute Tips 153 

Port p9 (19,000, -319.000) LEV kind=in width=0.2 

You need to replace all LEV terminals with one of the metal layers such as 

MET1, MET2, MET3 or POLY. You also need to make the width = 1 .O. After 

your changes, the line should look something like this: 

Port p9 (19.000, -319.000) MET1 kind=in width=l.O 

Invoke MicroRoute: 

MicroRoute -t cmos26 -9 block.upr -N net.upr 

The MicroRoute manual is very good from this point on. During the set up 

phase, here are a few things to change when setting up your Routing: 

a.)Tracks and Branches = 5 

b.)Channel Exit Margins = 500 

c.)Add to the Routing Order the following metal and contacts in order: 

MET1 

M1 M2 

MET2 

M2M3 

MET3 

d.)Select MET2 and edit it. Toggle the horizontal to vertical and vertical 

to horizontal. This will make the routing scheme HVH (MET1 

orizontal, MET2 vertical, MET3 horizontal). 

e.)Select MET3 and edit it. Change the cost of this layer to be higher: 8/ 

10 instead of 4/6. 



Appendix B: MicroRoute Tips 154 

f.)Select M2M3 contact. Make the size 3.2 instead of 2.4. 

7.) Place the components as close to where they should be before routing 

(This comes with experience). 

8.) Refer to manual from here on. 



Appendix C VHDL Code 
C.0 Contents 

This appendix contains all of the VHDL code to describe the register 
level corn ponen ts. 

C.1 Adder Cell Code 

LIBRARY unix; 
USE unix.rnath.ALL; 
LIBRARY Isi rn ; 
USE Isi rn .terrni nals. ALL; 
US E Isi rn . prag mas. ALL; 
LIBRARY std; 
USE std. textio.ALL; 

ENTITY addercell IS 
PORT(a, b, cin : IN LSIM-LOGIC; sout, cout : OUT LSIM-LOGIC); 
END adder-cell; 

ARCHITECTURE bhv OF adder-cell IS 
signal kk : integer; 
BEGIN 

PROCESS(a, by cin) 

PROCEDURE Ism2int (Ism : IN LSIM-LOGIC-VECTOR; int : OUT INTEGER) IS 
variable result : INTEGER; 
begin 
result := 0; 
FOR i in 0 to Isrn'LENGTH-1 LOOP 
IF Isrn(i) = '1' THEN 
result := result + 2**i; 
END IF; 
END LOOP; 
int := result; 
END Ism2int; 

FUNCTION sum (aa, bb, cc : LSIM-LOGIC) RETURN LSIM-LOGIC IS 

155 



Appendix C; VHDL Code 156 

BEGIN 
RETURN (aa AND bb AND cc) OR (aa AND (NOT bb) AND (NOT cc)) OR ((NOT 
aa) AND bb AND (NOT cc)) OR ((NOT aa) AND (NOT bb) AND cc); 
END sum; 

FUNCTION carry (aa, bb, cc : LSIM-LOGIC) RETURN LSIM-LOGIC IS 
BEGIN 
RETURN (aa AND bb) OR (aa AND cc) OR (bb AND cc); 
END carry; 

FILE delsum : TEXT IS IN "sum.dat"; 
TYPE DEL IS ARRAY (0 to 63) of time; 
variable tmp : DEL; 
variable aaa, bbb, ccc: LSIM-LOGIC := '0'; 
variable x : bit := '1'; 
variable k, intl, int2, int3 : integer range 0 to 63 := 0; 
variable linel , line2 : LINE; 
variable abcl , abc2 : LSIM-LOGIC-VECTOR (2 downto 0) ; 

BEGIN 

if x = '1' THEN 
for i in 0 to 63 loop 
READLINE(de1-sum, linel); 
READ (linel , tm p( i)) ; 
end loop; 
x := '0'; 
end if; 
k := 2; 
abcl (k) := ccc; 
k := 1; 
abcl (k) := bbb; 
k := 0; 
abcl (k) := aaa; 

k := 2; 

k := 1; 

k := 0; 

abc2(k) := cin; 

abc2(k) := b; 

abc2(k) := a; 
Ismi'int(abc1, intl); 
Ism2int(abc2, int2); 
int3 := intl + (int2 * 8); 
kk c= int3; 



Appendix C; VHDL Code 157 

sout <= transport sum (a, b, cin) AFTER tmp(int3); 
cout C= transport carry (a, b, cin) AFTER tmp(int3); 
aaa := a; 

ccc := cin; 
bbb := b; 

END PROCESS; 

END bhv; 

C.2 AND Gate Code 

LIBRARY Isim; 
USE Isi m .terminals. ALL; 

ENTITYandl IS 
PORT(a, b : IN LSIM-LOGIC; c : OUT LSIM-LOGIC); 
END andl; 

ARCHITECTURE bhv OF andl IS 

FUNCTION andab (aa, bb : LSIM-LOGIC) RETURN LSIM-LOGIC IS 
BEGIN 
RETURN (aa AND bb); 
END andab; 

BEGIN 

c e= andab (a, b); 

END bhv; 

C.3 Counter Code 

LIBRARY Isim; 
USE Isi m .termi nals.ALL; 

ENTITY count46 IS 
PORT (clk, reset : IN LSIM-LOGIC; cntl, cnt2, cnt3, cnt4 : OUT LSIM-LOGIC); 
END countl 6; 

ARCHITECTURE bhv OF countl 6 IS 

BEGIN 

PROCESS (clk) 



Appendix C; VHDL Code 158 

variable count : INTEGER RANGE 0 to 16 := 15; 

BEGIN 

IF Clk = '1 ' THEN 
IF reset = '0' THEN 
count := count + 1 ; 
ELSE 
count := 0; 
END IF; 

IF count > 15 THEN 
count := 0; 
END IF; 

IF count = 0 THEN 
cntl c='O'; 
cnt2 C= '0'; 
cnt3 C= '0'; 
cnt4 C= '0'; 
ELSlF count = 1 THEN 
cntl C= '0'; 
cnt2 C= '0'; 
cnt3 C= '0'; 
cnt4 C= '1 '; 
ELSIF count = 2 THEN 
cntl C= '0'; 
cnt2 C= '0'; 
cnt3 <= '1 '; 
cnt4 C= '0'; 
ELSIF count = 3 THEN 
cntl <= '0'; 
cnt2 <= '0'; 
cnt3 <= '1 '; 
cnt4 C= '1 '; 
ELSIF count = 4 THEN 
cntl C= '0'; 
cnt2 C= '1 '; 
cnt3 C= '0'; 
cnt4 C= '0'; 
ELSIF count = 5 THEN 
cntl C- '0'; 
cnt2 C= '1 '; 
cnt3 C= '0'; 
cnt4 <= '1 '; 



Appendix C; VHDL Code 159 

ELSIF count = 6 THEN 
cntl <= '0'; 
cnt2 C= '1 I; 
cnt3 C= '1 '; 
cnt4 <= '0'; 
ELSiF count = 7 THEN 
cntl C= '0'; 
cnt2 C= '1 '; 
cnt3 <= '1 '; 
cnt4 C= '1 '; 
ELSIF count = 8 THEN 
cntl C= '1'; 
cnt2 <= '0'; 
cnt3 C= '0'; 
cnt4 <= '0'; 
ELSIF count = 9 THEN 
cntl <= '1'; 
cnt2 <= '0'; 
cnt3 <= '0'; 
cnt4 <= '1 '; 
ELSIF count = 10 THEN 
cntl <= '1'; 
cnt2 C= '0'; 
cnt3 <= '1 '; 
cnt4 <= '0'; 
ELSIF count = 11 THEN 
cntl <= '1'; 
cnt2 <= '0'; 
cnt3 <= '1 '; 
cnt4 <= '1 '; 
ELSlF count = 12 THEN 
cntl <= '1'; 
cnt2 <= '1 '; 
cnt3 <= '0'; 
cnt4 C= '0'; 
ELSlF count = 13 THEN 
cntl <= '1 '; 
cnt2 C= '1 '; 
cnt3 <= '0'; 
cnt4 <= '1 I ;  

ELSIF count = 14 THEN 
cntl <= '1'; 
cnt2 C= '1 '; 
cnt3 C= '1 '; 
cnt4 <= '0'; 
ELSIF count = 15 THEN 



Appendix C; VHDL Code 160 

cntl <= Ill; 
cnt2 <= '1 '; 
cnt3 e= '1 I; 
cnt4 e= '1 I; 
END IF; 

END IF; 

END PROCESS; 

END bhv; 

C.4 Inverter Code 

LIBRARY Isim; 
USE lsim.terminals.ALL; 

ENTITY inv IS 
PORT(a : IN LSIM-LOGIC; ab : OUT LSIM-LOGIC); 
END inv; 

ARCHITECTURE bhv OF inv IS 

FUNCTION inv2 (aa : LSIM-LOGIC) RETURN LSIM-LOGIC IS 
BEGIN 
RETURN (NOT aa); 
END inv2; 

BEGIN 

ab <= inv2 (a); 

END bhv; 

C.5 Latch Cell Code 

LIBRARY Isim; 
USE isim. terminals.AI-L; 

ENTITY latch IS 
PORT (reset, cik, a : IN LSIM-LOGIC; b : OUT LSIM-LOGIC); 
END latch; 

ARCHITECTURE bhv OF latch IS 

BEGIN 



Appendix C; VHDL Code 161 

PROCESS (clk) 

variable save : LSIM-LOGIC := '0'; 

BEGIN 

IF clk = '1' THEN 
IF reset = '0' THEN 
b <= '0'; 
ELSE 
b <= a; 
save := a; 
END IF; 
ELSE 

IF reset = '0' THEN 
b <= '0'; 
ELSE 
b <= save; 
END IF; 
END IF; 

END PROCESS; 

END bhv; 

C.6 Master Section of the SAM Code 

LIBRARY lsim ; 
USE 1sim.terminals.ALL; 

ENTITY master IS 
PORT (reset, clk, a : IN LSIM-LOGIC; b : OUT LSIM-LOGIC); 
END master; 

ARCHITECTURE bhv OF master IS 

BEGIN 

PROCESS (clk, a) 

variable save : LSIM-LOGIC := '0'; 

BEGIN 



Appendix C; VHDL Code 162 

IF Clk = '1' THEN 
IF reset = '0' THEN 
b <= '0'; 
ELSE 
b C= a; 
save := a; 
END IF; 
ELSE 

IF reset = '0' THEN 
b <= '0'; 
ELSE 
b <= save; 
END IF; 
END IF; 

END PROCESS; 

END bhv; 

C.7 Multiplexer Cell Code 

LIBRARY Isi m ; 
USE Isi m .termi nals. ALL; 

ENTITY mux IS 
PORT(a, b, carry, clk : IN LSIM-LOGIC; c : OUT LSIM-LOGIC); 
END mux; 

ARCHITECTURE bhv OF mux IS 

BEGIN 

PROCESS (clk) 

BEGIN 

IF carry = '1' THEN 
c <= a; 
ELSE 

END IF; 
c <= b; 

END PROCESS; 

END bhv; 



- Appendix C; VHDL Code 1 63 

6.8 One Shot Code 

LIBRARY lsim ; 
USE lsim .terminals. ALL; 

ENTITY one-shot IS 
PORT(clk, a : IN LSIM-LOGIC; b : OUT LSIM-LOGIC); 
END one-shot; 

ARCHITECTURE bhv OF one-shot IS 

BEGIN 

PROCESS (clk) 

variable out1 :LSIM-LOGIC := '0'; 
variable save, count : LSIM-LOGIC := '0'; 

BEGIN 

IF clk = '1' THEN 

IF (a = '1') AND (save = '1') AND (count = '1') THEN 
outl := '1 I ;  

END IF; 
IF (a = '1') AND (save = '0') THEN 
outl := '0'; 
save := '1 '; 
END IF; 
IF (a = '0') AND (save = '1') AND (count = '0') THEN 
count := '1 '; 
END IF; 
END IF; 

END PROCESS; 

END bhv; 

C.9 OR Cell Code 

LIBRARY Isi m ; 
USE Isi m .termi nals. ALL; 



- Appendix C; VHDL Code ---__. 164 -- 

ENTITY or2 IS 
PORT(a, b : IN LSIM-LOGIC; c : OUT LSIM-LOGIC); 
END or2; 

ARCHITECTURE bhv OF or2 IS 

FUNCTION orab (aa, bb : LSIM-LOGIC) RETURN LSIM-LOGIC IS 
BEGIN 
RETURN (aa OR bb); 
END orab; 

BEGIN 

c c= orab (a, b); 

END bhv; 

C.10 Quadrant Detection Unit Code 

LIBRARY lsim ; 
USE Isi m. termi nals. ALL; 

ENTITY qd-unit IS 
PORT (clk, a, b, c, d, i-in, k i n  : IN LSIM-LOGIC; i-out, q-out: OUT 
LSIM-LOGIC); 
END qd-unit; 

ARCHITECTURE bhv OF qd-unit IS 

BEGIN 

PROCESS (clk, a, b, c, d, i i n ,  q-in) 

variable save : LSIM-LOGIC := '0'; 

BEGIN 

IF ((a = '1') OR (b = '1') OR (c = '1') OR (d = '1')) THEN 

IF (a = '1') THEN 
i-out c= i-in; 
q-out c= q-in; 
END IF; 

i-out C= (NOT %in); 
%out c= i-in; 

IF (b = ' A ' )  THEN 



Appendix C; VHDL Code 165 

END IF; 

i-out c= t i n ;  
%out c= (NOT i in ) ;  
END IF; 

i-out c= (NOT i-in); 
E o u t  c= (NOT t i n ) ;  
END IF; 

IF (C = '1') THEN 

IF (d = '1') THEN 

ELSE 
i-out c= i j n ;  
q-out c= q j n ;  
END IF; 

END PROCESS; 

END bhv; 

C.l l  Slave Section of the SAM Code 

LIBRARY Isim; 
US E Isi m .termi nals.ALL; 

ENTITY slave IS 
PORT (clk, a : IN LSIM-LOGIC; b : OUT LSIM-LOGIC); 
END slave; 

ARCHITECTURE bhv OF slave IS 

BEGIN 

PROCESS (clk) 

variable save : LSIM-LOGIC := '0'; 

BEGIN 

IF Clk = '1' THEN 
b C= a; 
save := a; 

ELSE 

b c= save; 
END IF; 



Appendix C; VHDL Code 166 

END PROCESS; 

END bhv; 

C.12 XOR Cell Code 

LIBRARY Isi m; 
USE 1sim.terminals.ALL; 

ENTITY xor21 IS 
PORT(a, sign : IN LSIM-LOGIC; xout : OUT LSIM-LOGIC); 
END xor21; 

ARCHITECTURE bhv OF xor21 IS 

FUNCTION xorab (aa, bb : LSIM-LOGIC) RETURN LSIM-LOGIC IS 
BEGIN 
RETURN (aa XOR bb); 
END xorab; 

BEGIN 

xout C= xorab (a, sign); 

END bhv; 

C.13 Modulator Samples Code 

LIBRARY unix; 
USE unix.math.ALL; 
LIBRARY Isim; 
USE 1sim.terminals.ALL; 
USE 1sim.pragmas.ALL; 

ENTITY mod-samp IS 
PORT (clk, en : IN LSIM-LOGIC; modo, mod1 , mod2, mOd3, mod4, mod5, mod6, 
mOd7, rndi, rndq : OUT LSIM-LOGIC); 
END mod-samp; 

ARCHITECTURE bhv OF mod-samp IS 

--signal seed : REAL := 1951 .O; 
signal rnd-number : REAL := 0.0; 
signal fourth : real := 0.0; 
signal symbol : real := 0.0; 
signal twtout : real := 0.0; 



Appendix C; VHDL Code 1 67 

signal modul : real := 0.0; 
signal ans : real := 0.0; 
signal ffff : real := 0.0; 

BEGIN 

PROCESS (clk) 

PROCEDURE frac2lsm(good : IN real; ism : OUT LSIM-LOGIC-VECTOR; outl : 
OUT real) IS 
variable tmpl , tmp2 : real; 
variable iii : integer; 
variable f : real; 
variable check : LSIM-LOGIC-VECTOR (7 downto 0); 

BEGIN 

iii := 7; 
f := good; 
IF (f >= 0.0) THEN 
check(iii) := '0'; 
ELSE 
check(iii) := '1 '; 
f := (f * (-1.0)); 
f := 1 .o - f; 
END IF; 
for iii in 6 downto 0 LOOP 
tmpl := 2.0 * f; 
tmp2 := floor(tmp1); 
outl := tmp2; 
f := tmpl - tmp2; 
IF tmp2 = 1 .O THEN 
check(iii) := '1 '; 
ELSE 
check(iii) := '0'; 
END IF; 
END LOOP; 

Ism := check; 
END frac2lsm; 

PROCEDURE random(seed-in : IN REAL; seedd, r a n d j ,  sed : OUT REAL; id, 
qd : OUT LSIM-LOGIC) IS 

variable k : REAL := 65539.0; 
variable m : REAL := 2147483648.0; 



Appendix C; VHDL Code 168 

variable sd, rd : REAL := 0.0; 

BEGIN 

sd := seedjn; 
sd := remainder((k * sd), m); 
sd := sd / m; 
IF sd c 0.0 THEN 

END IF; 
sed := sd; 
seeds := sd * m; 

sd := 1 .O + sd; 

rd := (sd * m) / (m - 1 .O); 

IF((rd >= 0.0) AND (rd c 0.25)) THEN 
rands  := 1.0; 
id := '1 '; 
qd := '0'; 
END IF; 

IF((rd >= 0.25) AND (rd c 0.5)) THEN 
rands  := 2.0; 
id := '0'; 
qd := '0'; 
END IF; 

IF((rd >= 0.5) AND (rd c 0.75)) THEN 
rands  := 3.0; 
id := '0'; 
qd := '1'; 
END IF; 

IF((rd >= 0.75) AND (rd C= 1 .O)) THEN 
rands  := 4.0; 
id := '1'; 
qd := '1'; 
END IF; 
END random; 

PROCEDURE bv2lsmv (bin : IN BIT; Ism : OUT LSIM-LOGIC) IS 
BEGIN 
IF bin = '1' THEN 
Ism := '1'; 
ELSE 
Ism := '0'; 



Appendix C; VHDL Code 1 69 

END IF; 
END bv2lsmv; 

PROCEDURE modulate(sym, n : IN REAL; i-wave, q-wave : OUT REAL) IS 
variable fc : REAL := 25000000.0; 
variable T : REAL := 1 .O / 100000000.0; 
variable Es : REAL := 0.5; 
variable pi : REAL := 3.1 41 592654; 
variable theta : REAL := 1.9; 

BEGIN 

i-wave := (sqrt(2.0 * Es) * cos((2.0 * pi * fc * n * T ) + (((2.0 * sym) - 1 .O) * (pi / 4.0)) 
+ theta)) ; 
q-wave := (sqrt(2.0 * Es) * sin((2.0 * pi * fc * n * T ) + (((2.0 * sym) - 1 .O) * (pi / 4.0)) 
+ theta)); 
END modulate; 

TYPE arr IS ARRAY (0 to 14) of BIT; 
TYPE arr2 IS ARRAY (0 to 14) of real; 
variable i, j: INTEGER := 0; 
variable mod-samp : INTEGER; 
variable seed, seed jen  : real := 1951 .O; 
variable modi-out, modkout : real; 
variable time : real := 0.0; 
variable ii : real; 
variable ioutt, qoutt : BIT; 
variable iout2, qout2 : LSIM-LOGIC; 
variable iout : arr := ('0' '1' '1' '1' '1' '0' '0' '0' '1' '0' '0' '1' '0' '1' '0')- 
variable qout : arr := ('O', 'l', 'l', 'l', 'l', '0, 'O', 'O', 'l', IO', IO', 'l', IO', 'l', '0'); 
variablesymb :arr2:= (2.0,4.0, 4.0, 4.0, 4.0, 2.0, 2.0, 2.0, 4.0, 2.0, 2.0, 4.0, 
2.0, 4.0, 2.0); 
variable seed-save : real; 
variable xx : LSIM-LOGIC := '1 '; 
variable iiii, qqqq : LSIM-LOGIC; 
variable rnd-num, s, rnd-save, symb-save : real; 
variable mod-out : real := 0.0; 
variable modlsm : LSIM-LOGIC-VECTOR (7 downto 0); 
variable four : real := 0.0; 
variable tmperary : integer := -1 ; 
variable a l ,  b l ,  c l ,  d l ,  e l ,  f l ,  91, h l ,  i l  : real := 0.0; 
variable j l  , k l ,  11, mi,  n l  , 01 -: real := 0.0; 
variable a2, b2, c2, d2, e2, f2,92, h2, i2 : real := 0.0; 
variable j2, k2, 12, m2, n2, 02 : real := 0.0; 
variable pp : integer := 0; 
variable fff : real; 

I 3 , > 9 , 3 , 9 3 ? 3 9 ,  9 



- Appendix C; VHDL Code 170 

BEGIN 

IF en = '1' THEN 

-- Phase Lock 
IF Clk = '1' THEN 

IF time c 64.0 THEN 
ii := 4.0; 
symbol <= ii; 
rndi C= '1'; 
rndq <= '1'; ~ 

mod u I at e (i i , ti me, mod i-ou t , mod g_ou t) ; 
modul <= modi-out; 
twtout c= modi-out; 
frac2lsm(modi-out, modlsm,fff); 
ffff <= fff; 
pp := 0; 
mod0 <= modlsm(pp); 
pp := 1; 
mod1 <= modlsm(pp); 
pp := 2; 
mod2 <= modlsm(pp); 
pp := 3; 
mod3 C= modlsm(pp); 
pp := 4; 
mod4 <= modlsm(pp); 
pp := 5; 
mod5 <= modlsm(pp); 

mod6 c= modlsm(pp); 

mod7 <= modlsm(pp); 
IF (time = 63.0) THEN 
ii := 2.0; 
END IF; 
END IF; 

pp := 6; 

pp := 7; 

-- Timing Recovery 
IF ((time >= 64.0) AND (time c 143.0)) THEN 
IF four = 0.0 THEN 
IF ii = 2.0 THEN 
ii := 4.0; 
symbol c= i i ;  
rndi C= '1'; 
rndq C= '1 '; 



Appendix C; VHDL Code 171 

ELSE 
ii := 2.0; 
symbol e= ii; 
rndi e= '0'; 
rndq e= '0'; 
END IF; 
END IF; 
four := four + 1 .O; 
fourth <= four + 1 .O; 
IF four = 4.0 THEN 
four := 0.0; 
fourth <= 0.0; 
END IF; 
modulate(ii, time, modi-out, modq-out); 
modul e= modi-out; 
frac2lsm(modi-out, modlsm, ff9; 
ffff <= fff; 
pp := 0; 
mod0 <= modlsm(pp); 
pp := 1; 
mod1 <= modlsm(pp); 
pp := 2; 
mod2 e= modlsm(pp); 
pp := 3; 
mod3 e= modlsm(pp); 
pp := 4; 
mod4 <= modlsm(pp); 
pp := 5; 
mod5 e= modlsm(pp); 
pp := 6; 
mod6 e= modlsm(pp); 
pp := 7; 
mod7 <= modlsm(pp); 
END IF; 

-- Unique Word 
IF ((time >= 143.0) AND (time <= 203.0)) THEN 
IF four = 0.0 THEN 
tmperary := tmperary + 1 ; 
ioutt := iout(tmperary); 
qoutt := qout(tmperary); 
bv2lsmv(ioutt, iout2); 
bv2lsmv(qoutt, qout2); 
rndi <= iout2; 
rndq <= qout2; 
ii := symb(tmperary); 



Appendix C; VHDL Code - 172 

symbol <= ii; 
END IF; 
four := four + 1 .O; 
fourth C= four + 1 .O; 
IF four = 4.0 THEN 
four := 0.0; 

END IF; 
modulate(ii, time, modi-out, modq-out); 
modul c= modi-out; 
frac2lsm(modi~out, modlsm, fff); 
ffff <= fff; 
pp := 0; 
mod0 C= modlsm(pp); 
pp := 1 ; 
mod1 C= modlsm(pp); 
pp := 2; 
mod2 <= modlsm(pp); 
pp := 3; 
mod3 <= modlsm(pp); 
pp := 4; 
mod4 C= modlsm(pp); 
pp := 5; 
mod5 c= modlsm(pp); 

mod6 <= modlsm(pp); 
pp := 7; 
mod7 c= modlsm(pp); 
END IF; 

fourth <= 0.0; 

pp := 6;, 

-- Data transmission 
IF (time >= 204.0) THEN 
IF four = 0.0 THEN 

seed := seedgen; 
ELSE 
seed := 1951 .O; 
xx := IO'; 
END IF; 
random(seed, seedden, rnd-num, s, iiii, qqqq); 
rndi C= iiii; 

END IF; 
four := four + 1 .O; 
fourth C= four + 1 .O; 
IF four = 4.0 THEN 

IF xx = '0' THEN 

rndq <= wqq; 



Appendix C; VHDL Code 173 

four := 0.0; 
fourth C= 0.0; 
END IF; 
rnd-save := s; 
rnd-number <= s; 
ii := rnd-num; 
symbol <= ii; 
symb-save := ii; 
modulate(ii, time, modi-out, modq-out); 
modul c= modi-out; 
frac2lsm(modi-out, modlsm, ff9; 
ffff <= fff; 
pp := 0; 
mod0 <= modIsm(pp); 
pp := 1; 
mod1 <= modlsm(pp); 
pp := 2; 
mod2 <= modlsm(pp); 
pp := 3; 
mod3 <= modlsm(pp); 
pp := 4; 
mod4 <= modlsm(pp); 
pp := 5; 
mod5 C= modlsm(pp); 

mod6 <= modlsm(pp); 

mod7 C= modlsm(pp); 
END IF; 
time := time -i- 1 .O; 
END IF; 
END IF; 
END PROCESS; 

pp := 6; 

pp := 7; 

END bhv; 

C.14 Phase ROM Code 

L1 B RARY u nix; 
USE unix.math.ALL; 
LIBRARY Isim; 
USE 1sim.terminals.ALL; 
USE 1sim.pragmas.ALL; 

USE std.textio.ALL; 
ENTITY phase-rom is 



Appendix C; VHDL Code 174 

PORT(clk, i-inl, i in2, i jn3 ,  i-in4, i jn5,  q-inl, q in2,  q in3, q-in4, q j n 5  : IN 
LSIM-LOGIC; phIl, ph-2, ph-3, ph-4, ph-5, ph-6 : OUT LSIM-LOGIC); 
END phase-rom; 

ARCHITECTURE bhv of phase-rom is 

signal cosowt : REAL; 

begin 

PROCESS (clk) 

PROCEDURE Ism2int (Ism : IN LSIM-LOGIC-VECTOR; int : OUT INTEGER) IS 
variable result : INTEGER; 
begin 
result := 0; 
FOR i in 0 to Ism'LENGTH-1 LOOP 
if Ism(i) = '1' THEN 
result := result + 2**i; 
END IF; 
END LOOP; 
int := result; 
END Ism2int; 

PROCEDURE bin2lsm (bin : IN LSIM-LOGIC-VECTOR; Ism : OUT 
LS I M-LOG IC-VECTO R) IS 
BEGIN 
FOR i in bin'LENGTH-1 downto 0 LOOP 
IF bin(bin'LENGTH-1 - i) = '1' THEN 
Ism(i) := '1'; 
ELSE 
Ism(i) := '0'; 
END IF; 
END LOOP; 
END bin2lsm; 

PROCEDURE bv2lsmv (bin : IN BIT-VECTOR; Ism : OUT 
LS I M-LOG I C-VECTO R) IS 
BEGIN 
FOR i in 0 to bin'LENGTH-1 LOOP 
IF bin(bin'LENGTH-1 - i) = '1' THEN 
Ism(bin'LENGTH-1 - i) := '1'; 
ELSE 
Ism(bin'LENGTH-1 - i) := '0'; 
END IF; 
END LOOP; 



Appendix C; VHDL Code 175 

END bv2lsmv; 

PROCEDURE signed-bin2frac (bin : IN LSIM-LOGIC-VECTOR ; int : OUT real) 
IS 
variable result : real; 
begin 
result := 0.0; 
FOR i in 1 to bin'LENGTH-1 LOOP 
if bin(bin'LENGTH-1 - i) = '1 THEN 
result := result + 2.0**(-9; 
END IF; 
END LOOP; 
int := result; 
END signed-bin2frac; 

TYPE rom-dat IS FILE OF BIT; 
FILE input-cos : rom-dat IS IN "phase.dat"; 
TYPE MEMORY IS ARRAY (0 to 1023) OF BIT-VECTOR (5 downto 0); 
TYPE MEM IS ARRAY (0 to 6143) of BIT; 

variable cos1 : LSIM-LOGIC-VECTOR (5 DOWNTO 0); 
variable intgr : INTEGER range 0 to 1023 := 0; 
variable sav-cos-array : MEMORY; 
variable tmpl : MEM; 
variable tmp2 : MEM; 
variable x : LSIM-LOGIC :=Ill; 

variable k : integer := 0; 
variable sn, cs : real; 
variable cosout : LSIM-LOGIC-VECTOR (5 DOWNTO 0); 
variable cos-out : LSIM-LOGIC-VECTOR (5 DOWNTO 0); 
variable sc-address : LSIM-LOGIC-VECTOR (9 DOWNTO 0); 

BEGIN 

IF Clk = '1' THEN 
if x = '1 then 

for i in 0 to 6143 loop 
READ(input-cos, tmp2(i)); 
end loop; 

FOR i in 0 to 1023 loop 
sav-cos-ar ray( i) : = 
tmp2(k)&tmp2(k+l )&tmp2(k+2)&tmp2(k+3)&tmp2(k+4)&tmp2(k+5); 
k := k+6; 



Appendix C; VHDL Code 176 

end loop; 
end if; 

x := '0'; 
k := 0;  
sc-address(k) := L i n l  ; 
k := 1; 
sc-address(k) := qJn2; 
k := 2; 
sc-address(k) := k in3 ;  
k := 3; 
sc-address(k) := qJn4; 
k := 4; 
sc-add ress( k) : = q i  n5 ; 
k := 5; 
sc-address(k) := i j n l  ; 
k := 6; 
sc-address(k) := i jn2;  
k := 7; 
sc-add ress (k) := i i  n 3; 
k := 8; 
sc-address(k) := i-in4; 
k := 9; 
sc-add ress( k) := i i  n5; 

Ism2i nt (sc-add ress, i ntg r) ; 

bv2Ismv(sav~cos~array( intg r) , cos 1 ) ; 

sig ned-bin2f rac( cos1 , cs) ; 
bin2lsm(cosl, cosout); 
cos-out := cosout; 
cosowt <= cs; 
k := 5; 
ph-1 <= cos-out(k); 
k := 4; 
ph-2 e= cos-out(k); 
k := 3; 
ph-3 C= cos-out(k); 
k := 2; 
ph-4 <= cos-out(k); 
k := 1; 
ph-5 <= cos-out(k); 
k := 0;  
ph-6 <= cos-out(k); 



~- Appendix C; VHDL Code 177 

END IF; 

END PROCESS; 

END bhv; 

C.15 Viterbi Non Linear ROM Code 

LIBRARY unix; 
USE unix. math. ALL; 
LIBRARY Isim; 
USE 1sim.terminals.ALL; 
USE Isim.pragmas.ALL; 

USE std.textio.ALL; 
ENTITY nlin-rom is 
PORT(clk, io, il, i2, i3, i4, i5, q0, qIIq2,q3,q4, 95 : IN LSIM-LOGIC; io0, iol, i02, 
io3, io4, io5, qo0, qol, q02, q03, qo4, qo5 : OUT LSIM-LOGIC); 
END nlin-rom; 

ARCHITECTURE bhv of nlin-rom is 

signal nI-address : LSIM-LOGIC-VECTOR (1 1 DOWNTO 0); 
signal iii : INTEGER; 
signal sinowt, cosowt : real; 

begin 

PROCESS (clk, io, i l ,  i2, 13, i4, i5, q0, q l  , 92, q3, q4,95) 

PROCEDURE signedJsm2int (Ism : IN LSIM-LOGIC-VECTOR; int : OUT 
INTEGER) IS 
variable result : INTEGER; 
begin 
result := 0; 
FOR i in 0 to Ism'LENGTH-1 LOOP 
IF Ism(i) = '1' THEN 
result := result + 2**i; 
END IF; 
END LOOP; 
int := result; 
END signedJsm2int; 

PROCEDURE bin2lsm (bin : IN LSIM-LOGIC-VECTOR; Ism : OUT 
LSIM-LOGIC - VECTOR) IS 



Appendix C; VHDL Code 178 

BEGIN 
FOR i in bin'LENGTH-1 downto 0 LOOP 
IF bin(bin'LENGTH-1 - i) = '1' THEN 
Ism(i) := '1 '; 
ELSE 
Ism(i) := '0'; 
END IF; 
END LOOP; 
END bin2lsm; 

PROCEDURE bv2lsmv (bin : IN BIT-VECTOR; Ism : OUT 
LS I M-LOG I C-VECTOR) IS 
BEGIN 
FOR i in 0 to bin'LENGTH-1 LOOP 
IF bin(bin'LENGTH-1 - i) = '1' THEN 
Ism(bin'LENGTH-1 - i) := '1'; 
ELSE 
Ism(bin'LENGTH-1 - i) := '0'; 
END IF; 
END LOOP; 
END bv2lsmv; 

PROCEDURE signed-bin2frac (bin : IN LSIM-LOGIC-VECTOR ; int : OUT real) 
IS 
variable result : real; 
begin 
result := 0.0; 
FOR i in 1 to bin'LENGTH-2 LOOP 
if bin(bin'LENGTH-1 - i) = '1' THEN 
result := result + 2.0**(-i); 
END IF; 
END LOOP; 
IF bin(bin'LENGTH-1) = '1 ' THEN 
int := ((1 .O - result) * (-1 .O)); 
ELSE 
int := result; 
END IF; 
END signed-bin2f rac; 

TYPE rom-dat IS FILE OF BIT; 
FILE input-sin : rom-dat IS IN "vnlq.dat"; 
FILE input cos : rom-dat IS IN "vnli.dat"; 
TYPE MEMORY IS ARRAY (0 to 4095) OF BIT-VECTOR (5 downto 0); 
TYPE MEM IS ARRAY (0 to 24575) of BIT; 

variable sin1 , cost : LSIM-LOGIC-VECTOR (5 DOWNTO 0); 



Appendix C; VHDL Code 179 

variable sav-sin-array : MEMORY; 
variable sav-cos-array : MEMORY; 
variable tmpl : MEM; 
variable tmp2 : MEM; 
variable x : LSIM-LOGIC Sl'; 
variable k : integer := 0; 
variable sn, cs : real; 
variable cosout, sinout : LSIM-LOGIC-VECTOR (5 DOWNTO 0); 
variable i-out, l o u t  : LSIM-LOGIC-VECTOR (5 DOWNTO 0);  
variable intgr : integer; 
BEGIN 

IF elk = '1' THEN 
if x = '1 ' then 

for i in 0 to 24575 loop 
READ (i n pu t-si n , t m p 1 (i)) ; 
RE AD (i n pu t-cos, t m p2( i)) ; 
end loop; 

FOR i in 0 to 4095 loop 
sav-si n-array (i) := 
tmpl (k)&tmpl (k+l )&tmpl (k+2)&tmpl (k+3)&tmpl (k+4)&tmpl (k+5); 
sav-cos-ar ray (i ) := 
tmp2(k)&tmp2(k+l )&tmp2(k+2)&tmp2(k+3)&tmp2(k+4)&tmp2(k+5); 

end loop; 
end if; 

k := k+6; 

k := 0;  

k := 1; 

k := 2; 

k := 3; 

k := 4; 

k := 5; 

k := 6; 

k := 7; 

nI-address(k) <= 90; 

nI-address(k) C= 91; 

nI-address(k) <= 92; 

nI-address(k) <= 93; 

nI-address(k) C= 94; 

nI-address(k) <= 95; 

nI-address(k) C= io; 



Appendix C; VHDL Code 1 80 

nl-address(k) c= i l  ; 

nI-address(k) C= i2; 

nI-address(k) C= i3; 

nI-address(k) c= i4; 

nladdress(k) C= i5; 

k := 8; 

k := 9; 

k := 10; 

k := 11; 

sign ed-Ism 2i nt( n 1-add ress ,i ntg r) ; 
iii e= intgr; 
bv2lsmv(sav~cos~array( in tg r) , cos 1 ) ; 
bv2 Is mv( sav-si n-ar ray( i n tg r) , si n 1 ) ; 

signed-bin2frac(coslI cs); 
signed_bin2frac(sinlt sn); 
bin2lsm(cosl , cosout); 
bin2lsm(sinl , sinout); 
i-out := cosout; 
q-out := sinout; 

k := 5; 

k := 4; 

k := 3; 

k := 2; 

k := 1; 

k := 0 ;  

io0 c= i-out(k); 

io1 C= i-out(k); 

io2 c= i-out(k); 

io3 c= i-out(k); 

io4 e= i-out(k); 

io5 c= i-out(k); 



Appendix C; VHDL Code 181 

sinowt <= sn; 
cosowt <= cs; 

END IF; 

END PROCESS; 

END bhv; 

C.16 Numerically Controlled Oscillator ROM Code 

LIBRARY unix; 
USE unix.math.ALL; 
LIBRARY lsim ; 
USE 1sim.terminals.ALL; 
USE 1sim.pragmas.ALL; 

USE std.textio.ALL; 
ENTITY nco-rom is 
PORT(clk, inO, in1 , in2, in3, in4, in5, in6, in7, in8, in9 : IN LSIM-LOGIC; c0, c i  , c2, 
c3, c4, c5, c6, c7, SO, s i ,  s2, s3, s4, s5, s6, s7 : OUT LSIM-LOGIC); 
END nco-rom; 

ARCHITECTURE bhv of nco-rom is 

signal iii : INTEGER; 
signal sinowt, cosowt : real; 

begin 

PROCESS (clk) 

PROCEDURE signed-lsm2int (Ism : IN LSIM-LOGIC-VECTOR; int : OUT 
INTEGER) IS 
variable result : INTEGER; 
begin 
result := 0; 
FOR i in 0 to Ism'LENGTH-1 LOOP 
IF Ism(i) = '1' THEN 
result := result + 2**i; 
END IF; 
END LOOP; 



Appendix C; VHDL, Code 182 

int := result; 
END signed-lsm2int; 

PROCEDURE bin2lsm (bin : IN LSIM-LOGIC-VECTOR; Ism : OUT 
LSI M-LOG I C-VECTOR) IS 
BEGIN 
FOR i in bin'LENGTH-1 downto 0 LOOP 
IF bin(bin'LENGTH-1 - i) = '1' THEN 
Ism(i) := '1 '; 
ELSE 
ism(i) := '0'; 
END IF; 
END LOOP; 
END bin2lsm; 

PROCEDURE bv2lsmv (bin : IN BIT-VECTOR; Ism : OUT 
LS I M-LOG I C-VECTO R) IS 
BEGIN 
FOR i in 0 to bin'LENGTH-1 LOOP 
IF bin(bin'LENGTH-1 - i) = '1' THEN 
Ism(bin'LENGTH-1 - i) := '1'; 
ELSE 
Ism(bin'LENGTH-1 - i) := '0'; 
END IF; 
END LOOP; 
END bv2lsmv; 

PROCEDURE signed-bin2frac (bin : IN LSIM-LOGIC-VECTOR ; int : OUT real) 
IS 
variable result : real; 
begin 
result := 0.0; 
FOR i in I to bin'LENGTH-2 LOOP 
if bin(bin'LENGTH-1 - i) = '1' THEN 
result := result + 2.0**(-i); 
END IF; 
END LOOP; 
IF bin(bin'LENGTH-1) = '1' THEN 
int := ((1 .O - result) * (-1 .O)); 
ELSE 
int := result; 
END IF; 
END signed-bin2f rac; 

TYPE rom-dat IS FILE OF BIT; 
FILE input - cos : rom-dat IS IN "nco-rom.dat"; 



Appendix C; VHDL Code 183 

TYPE MEMORY IS ARRAY (0 to 2047) OF BIT-VECTOR (7 downto 0); 
TYPE MEM IS ARRAY (0 to 16384) of BIT; 

variable sin1 , cos1 : LSIM-LOGIC-VECTOR (7 DOWNTO 0); 
variable sav-sin-ar ray : M EM0 RY ; 
variable sav-cos-array : MEMORY; 
variable tmpl : MEM; 
variable tmp2 : MEM; 
variable x : LSIM-LOGIC :='I1; 
variable k : integer := 0; 
variable sn, cs : real; 
variable cosout, sinout : LSIM-LOGIC-VECTOR (7 DOWNTO 0); 
variable i-out, %out : LSIM-LOGIC-VECTOR (7 DOWNTO 0); 
variable intgr : integer; 
variable nI-address : LSIM-LOGIC-VECTOR (9 DOWNTO 0); 
BEGIN 

IF Clk = '1' THEN 
if x = '1 then 

for i in 0 to 16383 loop 
READ(input-cos, tmp2(i)); 
end loop; 

FOR i in 0 to 1023 loop 
sav-cos-ar ray( i ) : = 
tmp2(k)&tmp2(k+l )&tmp2(k+2)&tmp2(k+3)&tmp2(k+4)&tmp2(k+5)&tmp2(k+6)&t 
mp2(k+7); 

sav-si n-a r ray (i ) : = 
k := k+8; 

tmp2(k)&tmp2(k+l )&tmp2(k+2jj&tmp2(k+3)&tmp2(k+4)&tmp2(k+5)&tmp2(k+6)&t 
mp2(k+7); 
k := k+8; 
end loop; 
end if; 

k := 0; 

k := 1; 

k := 2; 

k := 3; 

n I-add ress( k) : = i n 0; 

nI-address(k) := in1 ; 

n I-add r e s (  k) := in 2; 

n I-add ress (k) := i n3 ; 



Appendix C; VHDL Code 184 

k := 4; 

k := 5; 

k := 6; 

k := 7; 

k := 8; 

k := 9; 

nI-address(k) := in4; 

n I-address(k) := in5; 

n I-add ress (k) : = in 6; 

n I-add ress (k) : = i n 7; 

n I-add ress (k) : = in 8; 

nI-address(k) := in9; 

signed_lsm2int(n I-address ,intg r) ; 
iii <= intgr; 
bv2lsmv(sav~cos~array (i n tgr) , cos 1 ) ; 
bv2lsmv(sav-sin-array(intgr), sin 1 ); 

sign ed-bi n2f rac( cos 1 , cs) ; 
signed_bin2frac(sinl, sn); 
bin2lsm(cosl, cosout); 
bin2lsm(sinI, sinout); 
i-out := cosout; 
q-out := sinout; 

k := 7; 

k := 6; 

k := 5; 

k := 4; 

k := 3; 
C4 <= i-Qut(k); 
k := 2; 

k := 1; 

k := 0; 

c0 e= i-out(k); 

c l  e= i-out(k); 

c2 <= i-out(k); 

c3 c= i-out(k); 

c5 e= i-out(k); 

c6 e= i-out(k); 

c7 e= i-out(k); 



Appendix C; VHDL Code 185 

sinowt <= sn; 
cosowt <= cs; 

END IF; 

END PROCESS; 

END bhv; 



Appendix D Si~ulat ion In C 
~ 

D.0 Modulator Code 

#include cmath.h> 
#include cstdio.h> 
#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr; 
#define IM1 21 47483563 
#define IM2 21 47483399 
#define AM (1 .O/IMl) 
#define IMMI (IMI -1) 
#define IA l  40014 
#dofine IA2 40692 
#define IQ1 53668 
#aefine IQ2 52774 
#define IR1 1221 1 
#define IR2 3791 
#define NTAB 32 
#define NDIV (1 + IMMI/NTAB) 
#define EPS 1.2e-7 
#define RNMX (1 .O - EPS) 
#define PI 3.1 41 592653589793 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
/* FFTIIFFT: *I 
I* This subroutine performs the fft on a vector *I 
/* when isign is 1 and it performs the ifft when *I 
/* isign is -1. *I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
void FOUR1 (double data[], unsigned long nn, int isign) 
{ 

unsigned long n, mmax, m, j, istep, i; 
double wtemp, wr, wpr, wpi, wi, theta; 
double tempr, tempi; 

n=nn <e 1; 
j=1; 
for (i = 1 ; i en ; i +=2) 
{ 

186 



- Appendix D: Generatorsode 1 87 

if(j > i) 
{ 

I 

SWAP(data[j] ,data[ i]) ; 
SWAP(data[j+l ],data[i+l I); 

datan + 1 1; 

m=n >> 1; 
while (m >= 2 && j > m) 

j -= m; 
m >>= 1; 

1 
j += m; 

I 
mmax = 2; 
while (n > mmax) 
{ 

istep = mmax cc 1; 
theta = isign*(6.28318530717959/mmax); 
wtemp = sin(0.5 * theta); 
wpr = -2.O*wtemp*wtemp; 
wpi = sin(theta); 
wr = 1 .O; 
wi = 0.0; 
for (m = 1 ; m c m m ax; m +=2) 

for (i = m ; i c =n ; i +=is te p) 
{ 

j =i +m m ax; 
tempr = wr * datal] - wi * 

{ 

tempi = wr * data[j+I] + wi * 
datal] ; 

datal] = data[i]-tempr; 
datal +I ]=data[i+ 1 ]-tempi; 
data[i] += tempr; 
data[i+l] +=tempi; 

1 
wr = (wtemp=wr)*wpr-wi*wpi+wr; 
wi=wi*wpr+wtemp*wpi+wi; 

I 
mmax=istep; 

I 



Appendix D: Generator Code 188 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
I* Random Number Generator *I 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

float RAN1 (long *idurn) 
{ 

int j; 
long k; 
static long idum2=123456789; 
static long iy=O; 
static long iv[NTAB]; 
float temp; 

ifridurn c= 0) 

if(-ridurn) 1) *idum = 1; 
else *idum = -(*idurn); 
id u m2= (*i du m) ; 
for(j=NTAB+7;j>=O;j--) 
{ 

{ 

k=(*idum)/lQl ; 
*idum=IAl *(*idum-k*IQl )-k*IRl ; 
if(*idum<O) *idum += IM1; 
if(j NTAB) ivn] = *idum; 

1 
iy=iv[O]; 

k=(*idum)/lQl ; 
*i du m = I A1 * (*idu m - k* I Q 1 )-k* I R 1 ; 
if(*idum c 0) *idurn += IM1; 
k=idumZIQ2; 
idum2=IA2*(idum2-k*IQ2)-k*IR2; 
if(idum2 e 0) idum2 += IM2; 
j=iylND IV; 
iy=ivlj]-idum2; 
ivlj] = *idum; 
if(iy c 1) iy += IMM1; 
if((temp = AM*iy) > RNMX) return RNMX; 
else return temp; 

1 

1 

float RAN2(long *idurn) 

int j; 
long k; 
static long idurn24 23456789; 
static long iy=O; 

{ 



-- Appendix D: Generator Code 1 89 

static long iv[NTAB]; 
float temp; 

ifridurn c= 0) 

if(-(*idurn) c 1) *idum = 1; 
else *idum = -(*idurn); 
idum2=(*idum); 
for(j=NTAB+’iT;j>=O;j--) 

{ 

k=(*idum)/lQl; 
*id u m = I A 1 * (* i du m- k* I Q 1 )- k* I R 1 ; 
if(*idum<O) *idum += IMI; 
if(j c NTAB) iv!] = *idurn; 

I 

I 
k=(*idum)/lQl ; 
*i du m = I A I  * (* i du m - k* I Q 1 )- k* I R 1 ; 
if(*idum c 0) *idurn += IMI; 
k=idum2/1Q2; 
idum2=IA2*(idum2-k*lQ2)-k*IR2; 
if(idum2 c 0) idum2 += IM2; 
j=iy/NDIV; 
iy=iv[j]-idum2; 
iv!] = *idurn; 
if(iy c 1) iy += IMM1; 
if((temp = AM*iy) > RNMX) return RNMX; 
else return temp; 

iy=iv[O]; 

I 
float RAN3(long *idurn) 

int j; 
long k; 
static long idum2=123456789; 
static long iy=O; 
static long iv[NTAB]; 
float temp; 

ifridurn <= 0) 

if(-(*idurn) < 1) *idurn = 1; 
else *idurn = -(*idurn); 
idum2=(*idum); 
for(j=NTAB+7;j>=O;j--) 

{ 



Appendix D: Generator Code 190 

{ 
k=(*idum)/lQl ; 
*idum=IAl *(*idum-k*IQI )-k*IRI; 

*idum += I M I ;  
if(i c NTAB) ivIj] = *idum; 

I 
iy=iv[O]; 

I 
k=(*idum)/lQl ; 
*idum=IAl *(*idurn-k*IQ1 )-k*l R1; 
ifridum c 0) *idum += IM1; 
k=idum2/1Q2; 
idum2=IA2*(idum2-k*IQ2)-k*IR2; 
if(idum2 e 0) idum2 += IM2; 
j=iy/NDIV; 
iy=iv[j]-idum2; 
ivcj] = *idum; 
if(iy c 1) iy += IMMI; 
if((temp = AM*iy) > RNMX) return RNMX; 
else return temp; 

I 
/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* Produces integers between n and m using the 
/* random number generator output. *I 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

int RAND-INT(f1oat rand, int n, int m> 
{ 

int rnd-int; 
rnd-int = m + floor(rand * (n - m + 1)); 
return rnd-int; 

*I 

I 
/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* Numerically controlled oscillator for the phase *I 
/* revovery unit: sin(*) output. 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

double N CO2-S I N (in t ti m e-i n c) 
{ 

*I 

double fc = 25.0e6, t = I .O I 100.0e6; 
double sine; 
sine = (sqrt(2.0) * sin((2.0 * PI * fc * time-inc * t))); 
return sine; 

1 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* Numerically controlled oscillator for the phase *I 



~- Appendix D: Generator Code 191 

/* recovery unit: cos(*) output. */ 
/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

double NCO2-COS(int time-inc) 
{ 

double fc = 25.0e6, t = 1 .O / 100.0e6; 
double cosine; 
cosine = (sqrt(2.0) * cos((2.0 * PI * fc * time-inc * t))); 
return cosine; 

/ 
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* Numerically controlled oscillator for the down */ 
/* conversion unit: sin(*) output. 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
*/ 

double NCOl-SIN(int time-inc, double phase-inc) 
{ 

double fc = 25.0e6, t = 1 .O / 100.0e6; 
double sine; 
sine = (sqrt(2.0) * sin((2.0 * PI * fc * time-inc * t) + phase-inc)); 
return sine; 

1 
/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* Numerically controlled oscillator for the down */ 
/* conversion unit: cos(*) output. 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

double NCOl-COS(int time-inc, double phase-inc) 

*/ 

double fc = 25.0e6, t = 1 .O / 100.0e6; 
double cosine; 
cosine = (sqrt(2.0) * cos((2.0 * PI * fc * time-inc * t) + phase-inc)); 
return cosine; 

{ 

1 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* Noise Generator *I 
/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

double NORM-DIST(float rnl , float rn2, float var) 
{ 

double noise; 
noise = sqrt(-2.0*var*log(rn1))*cos(2*PI*rn2); 
return noise; 

1 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* lnegrate and Dump. */ 



Appendix D: Generator Code 192 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

void INT-AND-DUMP(doub1e i[], double q[], int sy[], int Ns, int biti[], int bitq[]) 

int k; 
double tmpi-0.0, tmpq=0.0; 
for(k=l ;k<(Ns+l );k++) 

{ 

if((k%4) == 0) 
{ 

tmpi += i[k-11; 
tmpq += q[k-11; 
if(tmpi > 0.0) biti[k/4] = 1; 
else biti[k/4] = -1; 
if(tmpq > 0.0) bitq[W4] = 1; 
else bitq[k/4] = -1; 
if(biti[k/4] == -1) 

{ 

if(bitq[k/4] == -1) 
{ 

{ 

I 
sy[k/4] = 2; 

else 

sy[k/4] = 3; 
1 

I 
{ 
else 

if(bitq[k/4] == -1) 
{ 

I 

{ 

sy[W4] = 1; 

else 

sy[k/4] = 4; 
I 

I 
tmpi = 0.0; 
tmpq = 0.0; 

I 
else 
{ 

I 

tmpi += i[k-11; 
tmpq += q[k-11; 



Appendix D: Generator Code 193 

int ERR(int si[], int s2[], int Ns) 

int k, er=O; 
for(k=O;k<Ns;k++) 

{ 

if(s1 [k] != s2[k+l I) 
er++; 

{ 

1 
return er; 

double ENERGY(doub1e da, int Ns) 

double sum=0.0, tw0=2.0; 
int k; 
for(k=O;k<Ns;k++) 

{ 

sum += pow(d[k],two); 
{ 

1 
sum I= (double) (Ns); 
return sum; 

1 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I* Main Program 
.............................................. I 

*I 

main() 
{ 

long iduml=l , idum2=2, idum3=3; 
int i, *symbol, m=l , n=4, j, fft, ifft, CRY TRY UW; 
int err=0; 
int unique_word[l5] = (2, 4, 4,4,4, 2, 2, 2, 4,2, 2, 4, 2, 4,2}; 
long N-symbols, N-samples, Lobes=2, K; 
long Samp-per-sym; 
long New-samp-rate, Nsamp; 
float rand; 
double *s, *s-new, *samp-sig, *inph, *quad, *noisy, *tmpy, *symbb; 
int *symb; 
double xx, yy, Ebit, No, Eb-No; 
double Tsamp, Esym, Tsym, fc, phase; 
double Tsamples, energy; 
float noise-var; 
float r l ,  r2; 



-- Appendix D: Generator Code 194 

int *bi, *bq; 
FILE *inp, *sig, *fiIspec, *spec, *inpp, *symspec; 

in p = f open ("in ph .day ,"w'*) ; 
f ilspec = f open ("f i Ispec.dat" ,"w") ; 
sig = fopen("sig.dat","w"); 
spec = fopen ("spec.dat","w"); 
in p p = f ope n ("in p p. d at" ,"w") ; 
symspec = fopen("symspec.dat","w"); 

yy = 2.0; 

ifft = (-1); 
fft = 1 ; 
Tsamp=l.0/400.0e6; 
Tsy m= 1 .0/25.0e6; 
N-symbols = (long) pow(yy,xx); 
printf("\n # of symbols is 'I); 

printf("%d\n",N-sym bols); 
fc = 25.0e6; 
Sampjer-sym = (long) (Tsym/Tsamp); 
N-samples=N-sy m bols*Sam pjer-sym ; 
Esy m =2.0; 
Ebit=Esym/2.0; 

xx = 14.0; 

CR = 32; 
TR = 20; 
UW = 15; 
phase = 0.0; 
N ew-Sam p-rate = Sam p j e  r-sym/4 ; 
Nsamp = N-sym bols*4; 

No = Ebit/Eb-No; 
Tsamples=l .0/100.0e6; 
noise-var = (No)*2.0; 

Eb-No = 10.0; 

symbol = (int *) calloc(N-symbols+l ,sizeof(int)); 
symbb = (double *) calloc(2*N~symbols+l ,sizeof(double)); 
s = (double *) calloc(N-samples+l ,sizeof(double)); 
s-new = (double *) cal Ioc( 2* N-sam p les + 1 ,si zeof (do u b le)) ; 
inph = (double *) calloc(Nsamp+l ,sizeof(double)); 
quad = (double *) calloc(Nsamp+l ,sizeof(double)); 
symb = (int *) calloc(N-symbols+l ,sizeof(int)); 
samp-sig = (double *) ealloc(Nsamp+l ,sizeof(double)); 
noisy = (double *) calloc(Nsamp+l ,sizeof(double)); 
tmpy = (double *) calloc(2*N-samples+l ,sizeof(double)); 



Appendix D: Generator Code 195 

bi = (int *) calloc(Nsamp+l ,sizeof(int)); 
bq = (int *) calloc(Nsamp+l ,sizeof(int)); 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I* Generate the random symbols used to describe the *I 
I* signal. */ 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I* phase recovery symbols */ 
for (i =O ; i <C R ; i + +) 

symbol[i] = 4; 
{ 

I 

{ 

I 

{ 

I 
if(N-symbols > 64) 
{ 

/* timing recovery symbols */ 
for (i =C R ;i < (T R+C R) ;i ++) 

if((i%2) == 0) symuol[i] = 4; 
else symbol[i] = 2; 

/* unique word symbols */ 
for(i=(TR+CR);i<(U W+TR+CR);i++) 

symbol[i] = unique-word{i - (TR+CR)]; 

for(i=(UW+TR+CR);i<N-symbols;i++) 
{ 

rand = RAN1 (&iduml); 
symbol[i] = RAND-INT(rand, n, m); 

I 
for(i=O;i<N-sym bols;i++) 

symbb[i] = symbol[i]; 
I 
FOUR1 (symbb, N-symbols, fft); 

for(i=O;i<2*N-~ymbols;i++) 

if(symbb[i] 0.0) symbb[i] *= -1 .O; 
{ 

I 
for(i=O;i<2*N-~ymboIs;i++) 
{ 

I 
fpri n tf (sy mspec,"%fin",sy m bb[i]) ; 



Appendix D: Generator Code 196 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I* Generate the signal. *I 
/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

for(i=O;icN-symbols;i++) 

f o r(j =O ;j <Sam p j e  r-s y m ;j + +) 
{ 

s[ i*Samp_per-sym +j] = sq rt(2.0* Esy m) 

+( (( 2.0*s y m bo1 [ i])- 1 . 0) * P 114.0)) ; 

* 

cos ((2.0* P I *f c* ((i*Sam p j e  r s  y m) +j)*Tsam p) 

I 
I 
printf('7nsignal generated"); 
energy = ENERGY(s, Nsamples); 
printf('7nThe energy is %fin",energy); 
for(i=l0000;ic(Samp_per~sym*Sampjer~sym+lOOOO) ;i++) 
{ 

1 
fprintf(sig ,"%f\n",s[i]); 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* From this point on, the vector symbol is not 
/* needed, so free it from memory. 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* for(i=O;icN-sym bols;i++) 

*I 
*I 

fprintf (out 1 ,"%d\n",sy m bo1 [ i]) ; 
{ 

1 
fclose(out1); *I 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I* The fft program needs real and imaginary parts *I 
I* of each signal sample. Since the signal is only *I 
/* real, the imaginary samples were interleaved in. */ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 

for(i=O;ic2*N-~amples;i++) 
{ 

I 

if((i % 2) == 0) s-new[i+l] = s[i12]; 
else s-new[i+l] = 0.0; 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*I 
/* needed, so free it from memory. */ 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

free (s) ; 

/* From this point on, the vector s is not 



Appendix D: Generator Code 197 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
I* Take the fft of the signal. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 

*I 

FOUR1 (s-new, N-samples, fft); 
printf("\nspectrurn generated"); 
fo r(i=O ;i <2*Nsamples;i ++) 
{ 

if(s-newii] c 0.0) tmpy[i] = -1 .O*s-newti]; 
else tmpy[i] = s-new[i]; 
f p rintf (spec,"%fin" , tm py[ i]) ; 

1 
fclose(spec); 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
/* Ideal bandpass filter the signal. *I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 

K = (N~samples-2*N~symboIs*Lobes)*2; 
for(i=O;i<K;i++) 

s-new[i+l+2*Lobes*N-sym bok] = 0 .O ; 
{ 

1 
printf("\nspectrum fibered"); 
for(i=O;i<2*N-~amples;i ++) 
{ 

if(s-new[i] c 0.0) tmpy[i] = -1 .O*s-new[i]; 
else tmpy[i] = s-new[i]; 
fprintf(fiIspec,"%fin",tmpy[il); 

1 
fclose(fi1spec); 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* Do the ifft to recover the filtered signal. */ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

FOUR1 (s-new, N-samples, ifft); 
for (i =O ; i <2 * N-sa m p I es ;i + = 2) 

s-new[i+l] /= (double) (N-samples); 
1 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* Sample the filtered signal at 4 samples/symbol. */ 
/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

for(i=O;i<Nsamp;i++) 
{ 

r l  = RAN2(&idum2); 



,Appendix D: Generator Code 198 

r2 = RAN3(&idum3); 
samp-sig[i] = s-new[i*2*New-sarnp-rate+l 1; 
noisy[i] = NORM-DIST(r1, r2, noise-var); 

I 
printf("\nsignal sample @ Lcds"); 
energy = ENERGY(samp-sig, Nsamp); 
printf("\nThe sampled sig energy is %fin",energy); 
energy = ENERGY(noisy, Nsamp); 
printf("\nThe noise energy is %An",energy); 

for(i=O;i<Nsamp;i++) 

samp-sig[i] += noisy[i]; 

*/ 

{ 

I 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I* From this point on, the vector s-new is not 
I* needed, so free it from memory. *I 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

free(s-new); 

for(i=O;icNsamp;i++) 

inph[i] = samp-sig[i] * NCOI-COS(i,phase); 
quad[i] = samp-sig[i] * NCOI SIN(i,phase); 

I 
printf("\ninph and quad data gen"); 
for(i=O;i<500;i++) 
{ 

I 
f prin tf (i np,"%fin", i n ph [ i]) ; 

fclose(inp); 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* From this point on, the vector samp-sig is not */ 
I* needed, so free it from memory. *I 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I* Make decision on which symbol was sent using an *I 
/* integrate and dump unit. 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I* From this point on, the vectors inph and quad *I 
I* are not needed, so free them from memory. */ 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

free(samp-sig); 

*I 

INT-AND-DUMP(inph, quad, symb, Nsamp, bi, bq); 

free( i n ph) ; 



- Appendix D: Generator Code 199 

f ree(quad) ; 
for(i=O;icNsarnp/32;i++) 

f p ri ntf (i n pp,"%d\n", bi [ i]) ; ' 

{ 

1 
fclose(inpp); 
err = ERR(symbo1, symb, N-symbols); 
printf("'m # of errors are %d\n",err); 
printf("'m Eb/No is %An",Eb-No); 

1 

D.1 Demodulator Code 

#include cstdio.h> 
#include cmath.h> 

f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* Pseudo random number generator sub-program. 
/* See Fundamentals of Queuing Theory 2nd edition*/ 
/*Don Gross and Carl Harris. pg 460-461. 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

void random(doub1e *r, double *s) 
{ 
double I; 
double integer; 
double k = 65539.0; 
double m = 2147483648.0; 

I = k * * r /  m; 
*r = modf(l, &integer); 
*r = *r m; 

*s = *r / (m - 1 .O); 
1 

void add-noise(double *sym-en, double *dB, double *mdl , double *rnd2, 
double *norm) 
{ 
double No, Nout, Nin, noise-BW = 23633000.0, pi = 3.1 41 592654, tmp; 
double noise-standard-deviation, mean=0.0, Tsym=1/25000000.0; 
double symbol-energy-to-noise-out; 
symbol-energy-to-noise-out = pow(lO.0 , (*dB / 10.0)); 
No = *sym-en / symbol-energy-to-noise-out; 
noise-standard-deviation = sqrt(No * noise-BW * Tsym); 
tmp = -2.0 * log(*rndl); 
*norm = mean + (noise-standard-deviation * sqrt(tmp) * cos(2.0 * pi * *md2)); 



Appendix D: Generator Code 200- 

tmp = tmp + 1; 
3 
double nco2_sin(int time-inc) 
{ 
double pi = 3.1 41 592654, fc = 25000000.0, t = 1 / 100000000.0; 
double sine; 
sine = (sqrt(2.0) * sin((2.0 * pi * fc * time-inc * t))); 
return sine; 
1 
double nco2-cos( int time-inc) 
{ 
double pi = 3.1 41 592654, fc = 25000000.0, t = 1 / 100000000.0; 
double cosine; 
cosine = (sqrt(2.0) * cos((2.0 * pi * fc * time-inc * t))); 
return cosine; 
1 
double n co 1 s i n  (in t ti m e-i n c, double p h ase-i nc) 
{ 
double pi = 3.141 592654, fc = 25000000.0, t = 1 / 100000000.0; 
double sine; 
sine = (sqrt(2.0) * sin((2.0 * pi * fc * time-inc * t) + phase-inc)); 
return sine; 

double n co 1 -cos (i n t ti m e-i nc, dou ble p h ase-i nc) 

double pi = 3.141592654, fc = 25000000.0, t = 1 / 100000000.0; 
double cosine; 
cosine = (sqrt(2.0) * cos((2.0 * pi * fc * time-inc * t) + phase-inc)); 
return cosine; 

3 

{ 

I 

void lowjass-fiIter(doub1e in, double *A, double *B, double *Cy double *D, 
double *E, double *F, double *G, double *H, double *I, 
double *J, double *K, double *L, double *My double *N, double *out) 

{ 
double 0, P, Q, R, S, T, U, V, W, X, Y, Z; 



Appendix D: Generator Code 201 

0 = in + *N; 
P = -.03125 * 0; 
Q = *B + *L; 
R = .0625 * Q; 
S = P + R ;  
T = *D + *J; 
U = -.09375 * T; 
v = s + u ;  
W = *F + *H; 
X = .3125 * W; 
Y = X + V ;  

Z = .5 * *G; 
*out = (Z + Y); 
1 

int tru(double ini, double inq, double *Ai, double *Bi, double *Ci, 
double *Di, double *Ei, double *Fi, double *Aq, double *Bq, 
double *Cq, double *Dq, double *Eq, double *Fq) 

{ 
int outi, outq, out; 

*Fq = *Eq; 
*Eq = *Dq; 
*Dq = *Cq; 
*Cq = *Bq; 
*Bq = *Aq; 
*Aq = inq; 



Appendix D: Generator Code 202 

if((((*Ai >= 0.0) && (*Bi >= 0.0) && (*Ci >= 0.0)) && 
((*Di e 0.0) && (*Ei e 0.0) && (*Fi e 0.0))) 11 
(((*Ai 0.0) && (*Bi c 0.0) && (*Ci 0.0)) && 

((*Di >= 0.0) && (*Ei >= 0.0) && (*Fi >= 0.0)))) 

outi = 1; 

else 

outi = 0; 

{ 

I 

{ 

I 
if((((*Aq > 0.0) && (*Bq > 0.0) && (*Cq > 0.0)) && 
((*Dq <= 0.0) && (*Eq <= 0.0) && (*Fq <= 0.0))) 11 

((*Dq > 0.0) && (*Eq > 0.0) && (^Fq > 0.0)))) 
{ 
outq = 1; 
I 
else 
{ 
outq = 0; 
1 

(((*Aq <= 0.0) && (*Bq <= 0.0) && (*Cq <= 0.0)) && 

if((outi == 1) 11 (outq == 1)) 
{ 
out = 1; 
I 
else 
{ 
out = 0; 
I 
return out; 
I 
int chan-tran(int in, int *AA, int *BB, int *CC, int *DD, 
int *EE, int *FF, int *GG, int *HH) 

int out2; 
{ 

if((in == 1) && (*DD == 1) && (*HH == 1)) 
{ 
out2 = 1; 
I 



Appendix D: Generator Code 203 

else 
i 
out2 = 0; 
1 

*HH = *GG; 
*GG = *FF; 
*FF = *EE; 
*EE = *DD; 
*DD = *CC; 
*CC = *BB; 
*BB = *AA; 
*AA = in; 

return out2; 

void counter(int reset, int *count) 
{ 

if(reset == 1) 
{ 
*count = 0; 
1 
else 
{ 
*count += 1; 
1 
ifrcount > 3) 

*count = 0; 
{ 

1 
1 
void idu(int set, double data, double *accum, int *hold, double *save-accum, 
int *y) 
{ 
int invert; 

if(set == 3) 
{ 
*y=  1; 
*accum += data; 

ifraccum >= 0.0) 
*save-accu m = *accu m ; 



Appendix D: Generator Code 204 

{ 
invert = 1 ; 
I 
else 
{ 
invert = -1 ; 
1 
*hold = invert; 

*accum = 0.0; 
I 
else 
{ 
*y = 0; 
*accum += data; 
1 
I 
void integrate(int set1 , double datal, double *accuml , double *save-accuml) 
{ 

if(set1 ==3)  

*accuml += datal ; 
*save-accuml = *accuml ; 
*accuml = 0.0; 

I 
else 
{ 
*accuml += datal ; 
1 
1 

void pru(int *sample-now, double *i-data, double *q-data, double *save-i-datal, 
double *save-q_datal, double *save_i_data2, double *save_q_data2, 
double *save-middle-i, double *save-middle-q, int *number, 
double *phase-est) 
{ 
double pi = 3.1 41 592654, arg-sample, mag, new-i-data, new-q-data; 
double i-average, q-average, phase-est2; 
double one, two, three, quant=l .O; 

ifrsample-now == 3) 
{ 
*number += 1 ; 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



Appendix D: Generator Code 205 

/* Do a rectangular to polar transformation /* 
/* on the sample. /* 

/ ............................................. 
if(*i-data == 0.0) 
{ 
arg-sample = pi / 2.0; 
1 
else 
{ 
arg-sample = (atan2(*qYdata,*i-data)) * 4.0; 
1 

/ ............................................. 
P Do the non-linear transformation on the */ 

*/ 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

mag = sqrt((*q-data * *q-data) + (*i-data * *i-data)); 

P magnitude of the sample. 

/ ............................................. 
/* Do a polar to rectangular transformation /* 
/* on the sample. /* 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

new-i-data = quant * pow(mag,O) * cos((arg-sample + pi)); 
new-tdata = quant * pow(mag,O) * sin((arg-sample + pi)); 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* Average the samples over the estimation */ 
/* period. */ 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

if(*number e= 8)  

*save-i-datal += (new-i-data / ((1 6.0 * 1 .O) + 1 .O)); 
*save-q-datal += (new-q-data I ((1 6.0 * 1 .O) + 1 .O)); 

ifvnumber == 9) 

*save-middle-i = (new-i-data / ((1 6.0 * 1 .O) + 1 .O)); 
*save-middle-q = (new-q-data / ((16.0 * 1 .O) + 1 .O)); 

{ 

1 

1 
if(*number > 9) 
{ 

*save_i-data:! += (new-i-data / ((1 6.0 * 1 .O) + 1 .O)); 
*save_q_data2 += (new-Kdata / ((1 6.0 * 1 .O) + 1 .O)); 

1 
/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



Appendix D: Generator Code 206 - 

/* One estimation period is up, take the */ 
/* inverse tangent of the averaged data. */ 

/ ............................................. 
ifrnumber == 17) 
{ 
i-average = *save-i-datal + *save_i_data2 + *save-middle-i; 
q-average = *save-q-datal + *save-%data2 + *save-middle-q; 

*phaseWest = (atan2(q_averageYi-average)) / -4.0; 
one = i-average; 
if(one c 0.0) 

one *= -1 .O; 
two = q-average; 
if(two e 0.0) 

two *= -1 .o; 
three = two / one; 
if(three e 0.1) 

*phase-est = 0.0; 

/ ............................................. 

/* Need to use the last averaged data with */ 
/* the next averaged data, so save the last *I 
/* averaged data and start over by finding */ 

/ ............................................. 
*number = 8; 
*save-i-datal = *save_i_data2; 
*save-q_datal = *saveWq-data2; 
*save_i_data2 = 0.0; 
*save-q-data2 = 0.0; 

/* the new averaged data. */ 

1 
I 
I 

void main() 
{ 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* Declarations of integers and doubles */ 
/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

int time, sample, tru-out = 0, chan-tran-out = 0, increment = 0, integ; 
int AAA=O, BBB=O, CCC=O, DDD=O, EEE=O, FFF=O, GGG=O, HHH=O, h=O; 
int clock = 0, clock1 = 0, clock2 = 0, output-i=O, output-q=O, inc = 0; 
int diffil =O, diffql =O, tmp3, symbol; 

double f ake-i =O . 0 , fa ke-q =O . 0 , p r u i  =O . 0, p r u-q=O. 0, t m p 1 , t m p2; 



Appendix D: Generator Code 207 

double phase=0.0, save-ai1 =O.O, save-aql =O.O; 
double save_ai2=0 .O, save-aq2=0.0, save_mi=O.O, save-m-q=O.O; 
do u b I e q ps k-Sam p le, i n p h , quad, base ban d-dat a-i =O . 0 , save-ai =O 0 , 
save-aq=O. 0; 
double baseband-data-q=O .O, addi=O .O, addq=O .Of i nph2, quad2; 
doubleAk0.0, Bk0.0, Cl=O.O, Dh0.0, El=0.0, Fl=O.O, G1=0.0, Hb0.0, IkO.0; 
double J1 =O.O, K1 =O.O, L1 =O.O, M1 =O.O, N1 =O.O; 
double A2=0.0, B2=0.0, C2=0.0, D2=0.0, E2=0.0, F2=0.0, G2=0.0, H2=0.0,12=0.0; 
double J2=0.0, K2=0.0, L2=0.0, M2=0.0, N2=0.0; 
double AI=0.0, BL0.0, CkO.0, DI=O.O, EL0.0, FkO.0; 
double AQ=O.O, BQ=O.O, CQ=O.O, DQ=O.O, EQ=O.O, FQ=O.O; 
int detected_wordi[l2], detected-wordq[ 123; 
int wordi[12] = (-1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1); 
int wordq[l2] = {-1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, I}; 
int yes, output-save, int-noise; 
double symbol-energy; 
double rand1 , rand2, seed=l951 .O, decibels = 0.0, noise=0.0; 
symbol-energy = 0.5; 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* Files that will be created when running the program. "/ 
/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

FILE *outi, *outq, *input, *reci, *recq; 
FILE *inp, *qua, *nois, *symb; 
FILE *ph; 
i n put = f open ("c :\\b k\\de mod\\data\\ms. dat" ,'Y) ; 
in p = fopen ("c:\\b k\\demod\\data\\i n p h. dat",l'w'') ; 
qua = fopen("c:\\bk\\demod\\data\\quad.dat","w"); 
outi = fopen("c:\\bk\\demod\\data\\basi.dat","w"); 
ou tq = fopen("c:\\bk\\de mod\\data\\basq. dat","w'') ; 
reci = fopen ("c:\\b k\\demod\\data\\recvdi . dat",'Tw'l) ; 
recq = fopen ("c:\\bk\\demod\\data\\recvdq. dat" ,"w") ; 
ph = fopen("c:\\bk\\demod\\data\\phase.dat","w") ; 
n oi s = f open (" c :\\b k\\d e m od\dat a\\n oise . dat" ,"w") ; 
sym b = fopen"c:\\bk\\demod\\data\\recsym.dat',''w''); 

for(time = 0; time c 8384; ++time) 
{ 
fscanf(input, "%If" , &qpsk-sample); 
random (&seed, &rand 1 ) ; 
random(&seed, &rand2); 
add-noise(&symbol-energy, &decibels, &randl , &rand2, &noise); 
fprintf(nois, "%An" , noise); 

inph = ncol-cos(time, phase) * qpsk-sample; 
inph += noise; 



Appendix D: Generator Code 208 

inph2 = nco2_cos(time) * qpsk-sample; 

quad = ncol-sin(time, phase) * qpsk-sample; 

quad2 = nc02_sin(time) * qpsk-sample; 

inph2 += noise; 

quad += noise; 

quad2 += noise; 

f p r i n tf (i n p ,Yo fin 'I, in p h ) ; 
f p ri n t f (q u a,""/finn, q u ad) ; 

in teg rate (i n cre men t , i n p h 2, &fa ke-i , & p r u i )  ; 
integrate(increment, quad2, &fake-q, &pru-q); 

pru(&increment, &prui, &pru-q, &save-aiI, &save-aql , &save_ai2, 
&save-aqZ, &save-mJ, &save-m-q, &inc, &phase); 

f p ri n tf ( ph ,"Yofin", phase) ; 

low-pass-filter(inph, &Al, &B1, &C1, &D1, &El, &F1, &GI, &HI, &II, 
&J1, &K1, &L1, &MI, &N1, &baseband-data-i); 

low-pass-fiIter(quad, &A2, &B2, &C2, &D2, &E2, &F2, &G2, &H2, &12, 
&J2, &K2, &L2, &M2, &N2, &baseband-data-q); 

f pri n tf (outi ,Yofin", base band-data-i) ; 
fprintf (outq,"%fin", baseband-data-q); 

tru-out = tru(baseband-data-i, baseband-data-q, &AI, &BI, &CI, 
&DI, &El, &FI, &AQ, &BQ, &CQ, &DQ, &EQ, &FQ); 

chan-tran-out = chan-tran(tru-out, &AM, &BBB, &CCC, &DDD, 
&EEE, &FFF, &GGG, &HHH); 

clock2 = Clock1 ; 
clock1 = Clock; 
counter(chan-tran-out, &clock); 

idu(clock2, baseband-data-i, &add( &output-/, &save-ai, &yes); 
idu(clock2, baseband-data-q, &addq, &output-q, &save--aq, &yes); 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* This part of the program is only used to decipher which quadrant 
/* the signal is in. */ 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

if((time >= 152) && (time C= 199) && (yes == 1)) 

*/ 



Appendix D: Generator Code 209 

{ 
detected-wordi[h] = output i; 
detected-wordq[h] = outputq; 
if (detected-wordi[h] != wordi[h]) 
diffil ++; 
if(detected-wordq[h] != wordq[h]) 
diffql ++; 
h++; 

I 
increment += 1; 
if(increment > 3) 

increment = 0; 
{ 

1 
if((time >= 152) && (yes == 1)) 
{ 
if((diffi1 > 6) && (diffql > 6)) 
{ 
if(output-i == -1) 
{ 
output-i = 1; 
I 
else 
{ 
output-i = -1; 
1 
if(output-q == -1) 
I 
output-q = 1; 
1 
else 
{ 
output-q = -1 ; 
3 
I 

{ 

{ 

if(output-i == -1) 
{ 
output-q = 1; 

else 

if((diffi1 > 6) && (diffql e= 6)) 

output-save = output-q; 



Appendix D: Generator Code 210 

1 
else 
{ 
output-q = -1 ; 
1 

1 

{ 

{ 

{ 

I 

{ 

1 

I 
1 
I 
I 

output-i = output-save; 

else 

if((diffi1 c= 6) && (diffql > 6)) 

output-save = output-i; 
if(output-q == -1) 

output-i = 1; 

else 

output-i = -1; 

output-q = output-save; 

fprintf(reci,"%d\n", output-i); 
fprintf (recq,"%d\n", outpu t-q); 
if(yes == 1) 
{ 
if((output-i == -1) && (output-q == -1)) 
{ 
symbol = 2; 
I 
if((output-i == -1) && (output-q == 1)) 
{ 
symbol = 3; 
I 
if((output-i == 1) && (output-q == -1)) 

symbol = 1 ; 
1 
if((output-i == 1) && (output-q == 1)) 
{ 
symbol = 4; 
1 



Appendix D: Generator Code 21 1 

f p ri n tf (s y m b, "%d\n",s y m bo I) ; 
1 
1 

1 

D.2 Programming The NCO ROM 

#include cstdio.h> 
#include <math. h> 

void main() 

double tmpl , tmp2, tmp3, pi = 3.1 41 592654, store, store2; 
int i, tmp, bk; 
FILE *out1 ; 
out 1 = f o pe n (" n co-ro m . d ats',ltwll) ; 

{ 

for(i = 0; i c 1024; i++) 

store = cos(i * pi / 51 2.0); 
store2 = sin(i * pi I' 51 2.0); 
if(store == 1 .O) 
{ 
store = 0.999999; 
1 
if(store == -1 .O) 
{ 
store = -0.99999; 
1 
tmpl =store; 
if(tmp1 >= 0.0) 
{ 
fprintf(out1 ,"[O]\n"); 
1 
else 
{ 
f p ri n tf (ou t 1 ,'I[ 1 ]\n") ; 
tmpl *= -1 .O; 
tmpl = 1 .O - tmpl ; 
1 

{ 

for(bk = 0; bk c 7; bk++) 



Appendix Q: Generator Code . 212 

{ 
tmpl *= 2.0; 
tmp2 = modf(tmp1, &tmp3); 
tmp = 1 * tmp3; 
fprintf(out1 ,"~[%d]\n",tmp); 
tmpl =tmp2; 
1 

if(store2 == 1 .O) 
{ 
store2 = 0.999999; 
1 
if(store2 == -1 .O) 
{ 
store2 = -0.99999; 
1 
tmpl = store2; 
if(tmp1 >= 0.0) 
{ 
fpri n tf (ou t 1 ,'I[ O]\n") ; 
1 
else 
{ 
f pri n tf (ou t 1 ,I*[ 1 ]\n") ; 
tmpl *= -1 .O; 
tmpl = 1 .O - tmpl ; 

for(bk = 0; bk e 7; bk++) 

tmpl *= 2.0; 
tmp2 = modf(tmp1, &tmp3); 
tmp = 1 * tmp3; 
f pri n tf (ou t 1 ,'I[ %d]\n", t m p) ; 
tmpl =tmp2; 

{ 

1 

0.3 Programming The Non-Linear ROM 

#include estdio. h> 



Appendix D: Generator Code 213 

##include <math.h> 

void main() 
{ 

double pi = 3.1 41 592654, arg-sample, mag, new-i-data, new-qdata; 
double i-average, %average; 
double one, two, three, quant=l .O, i-data, q-data, phase-est; 
double tmpl , tmp2, tmp3; 
int sample-now = 3, a=O, tmp, bk; 
FILE *out1 ; 
ou t l  = fopen("vn1i .dat","w") ; 

for(i-data = 0; i-data e 32; i-data++) 
{ 
for(q-data = 0; Lda ta  e 32; %data++) 

I 
{ ............................................. 
/* Do a rectangular to polar transformation /* 
/* on the samples. /* 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

if(i-data == 0) 
{ 
if(q_data == 0) 
{ 
arg-sample = 0.0; 
1 
else 
{ 
arg-sample = 4.0 * pi / 2.0; 
1 
1 
else 
{ 
arg-sample = (atan2(q_data,i_data)) * 4.0; 

1 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* Do the non-linear transformation on the *I 
*I 
/ ............................................. 

mag = sqrt((q_data * q-data) + (i-data * i-data)); 

I* magnitude of the sample. 

/ ............................................. 
I* Do a polar to rectangular transformation /* 
I* on the sample. /* 



Appendix D: Generator Code 214 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

new-i-data = quant * pow(mag,a) * cos((arg-Sam 
new-q-data = quant * pow(mag,a) * sin((arg-Sam 
if(new-i-data == 1 .O) 
new-i-data = 0.999999; 
if(new-i-data == -1 .OO) 
new-i-data = -0.999999; 
if(new-q-data == 1 .O) 
new-q-data = 0.999999; 
if(new-q-data == -1 .OO) 
new-q-data = -0.999999; 

tmpl = new-i-data; 
if(tmp1 >= 0) 
{ 
f p ri n tf (ou t 1 , "O\n ") ; 
1 
else 
{ 
f pri ntf (ou t 1 ,'I 1 \n") ; 
tmpl *= -1.0; 
tmpl = 1 .O - tmpl ; 

for(bk = 0; bk < 5; bk++) 

tmpl *= 2.0; 
tmp2 = modf(tmp1, &tmp3); 
tmp = 1 * tmp3; 
f p ri n tf (ou t 1 ,"%d\n", tm p) ; 
tmpl =tmp2; 

I 

{ 

I 
tmpl = new-q-data; 
if(tmp1 >= 0) 
{ 
f pri n tf (ou t 1 ,"O\n") ; 
I 
else 
{ 
f pri n tf (ou t 1 ,I1 1 \n") ; 
tmpl *= -1 .O; 
tmpl = 1 .O - tmpl ; 
I 
for(bk = 0; bk < 5; bk++) 
{ 
tmpl *= 2.0; 



Appendix D: Generator Code 215 

tmp2 = modf(tmp1, &tmp3); 
tmp = 1 * tmp3; 
fprintf(out1 ,"%d\n",tmp); 
tmpl = tmp2; 

for(%data = -32; %data 0; q_data++) 
{ 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I* Do a rectangular to polar transformation /* 
I* on the sample. I* 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

if(i-data == 0) 
{ 

1 
else 
{ 
arg-sample = (atan2(q_data,imdata)) * 4.0; 

arg-sample = 4.0 * 3.0 * pi 12.0; 

1 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I* Do the non-linear transformation on the *I 
*I 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

mag = sqrt((q_data * q-data) + (i-data * i-data)); 

/* magnitude of the sample. 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I* Do a polar to rectangular transformation I* 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

new-i-data = quant * pow(mag,a) * cos((arg-sample + pi)); 
new-q-data = quant * pow(mag,a) * sin((arg-sample + pi)); 
if(new-i-data == 1 .O) 
new-i-data = 0.999999; 
if(new-i-data == -1 .OO) 
new-i-data = -0.999999; 
if(new-q-data == 1 .O) 
new-%data = 0.999999; 
if(new-q_data == -1 .OO) 
new-q_data = -0.999999; 
tmpl = new-i-data; 

I* on the sample. /* 



Appendix D: Generator Code 216 

if(tmp1 >= 0) 

fprintf(out1 ,"O\n"); 
1 
else 
{ 
fpri ntf (out 1 ,I' 1 \n") ; 
tmpl *= -1.0; 
tmpl = 1.0 - tmpl; 

1 

{ 
for(bk = 0; bk c 5; bk++) 

tmpl *= 2.0; 
tmp2 = modf(tmp1, &tmp3); 
tmp = 1 * tmp3; 
f p rin tf (out 1 ,"%d\n" , t m p) ; 
tmpl =tmp2; 
1 

tmpl = new-q-data; 
if(tmp1 >= 0) 

f p ri n tf (ou t 1 ,"O\n") ; 

else 

f pri n tf (ou t 1 ," 1 \n") ; 
tmpl *= -1.0; 
tmpl = 1 .O - tmpl ; 

{ 

1 

1 

{ 
tmpl *= 2.0; 
tmp2 = modf(tmp1, &tmp3); 
tmp = 1 * tmp3; 
f printf (ou t 1 ,"%d\n" ,tm p) ; 
tmpl =tmp2; 
1 

fOr(bk = 0; bk < 5; bk++) 

1 

{ 

{ 

for(i-data = -32; i-data c 0; i-data++) 

for(q_data = 0; q-data 32; q-data++) 



Appendix D: Generator Code 217 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I* Do a rectangular to polar transformation /* 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I* on the sample. /* 

arg-sample = (atan2(q_data,i_data)) * 4.0; 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I* Do the non-linear transformation on the *I 
*I 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

mag = sqrt((q-data * q-data) + (i-data * i-data)); 

I* magnitude of the sample. 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I* Do a polar to rectangular transformation /* 
/* on the sample. I* 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

new-i-data = quant * pow(mag,a) * cos((arg-sample + pi)); 
new-q-data = quant * pow(mag,a) * sin((arg-sample + pi)); 
if(new-i-data == 1 .O) 
new-i-data = 0.999999; 
if(new-i-data == -1 .OO) 
new-i-data = -0.999999; 
if(new-q-data == 1 .O) 
new-%data = 0.999999; 
if(new-%data == -1 .OO) 
new-%data = -0.999999; 
tmpl = new-i-data; 
if(tmp1 >= 0) 
{ 
f p ri n tf (ou t 1 ,"O\n") ; 
1 
else 
{ 
f p ri n tf (ou t 1 ," 1 \n") ; 
tmpl *= -1 .O; 
tmpl = 1.0 - tmpl; 
1 
for(bk = 0; bk c 5; bk++) 
{ 
tmpl *= 2.0; 
tmp2 = modf(tmp1 &tmp3); 
tmp = 1 * tmp3; 
f p ri n tf (ou t 1 ,"%d\n" t m p) ; 
tmpl = tmp2; 
1 



Appendix D: Generator Code 218 

tmpl = new-%data; 
if(tmp1 >= 0) 
{ 
f p ri n tf (ou t 1 , "O\n") ; 
1 
else 
{ 
fprintf (ou t 1 ," 1 \n") ; 
tmpl *= -1 .O; 
tmpl = 1 .O - tmpl ; 
1 
for(bk = 0; bk c 5; bk++) 

tmpl *= 2.0; 
tmp2 = modf(tmp1, &tmp3); 
tmp = 1 * tmp3; 
f pri n tf (ou t 1 , "%d\n", tm p) ; 
tmpl = tmp2; 
I 

I 
for(q-data = -32; q-data c 0; %data++) 

I ............................................. { 

I* Do a rectangular to polar transformation /* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
/* on the sample. I* 

arg-sample = (atan2(q_datayi-data)) * 4.0; 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* Do the non-linear transformation on the */ 
*I 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

mag = sqrt((q-data * %data) + (i-data * i-data)); 

I* magnitude of the sample. 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I* Do a polar to rectangular transformation I* 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

new-i-data = quant * pow(mag,a) * cos((arg-sample + pi)); 
new-q-data = quant * pow(mag,a) * sin((arg-sample + pi)); 
if(newi-data == I .O) 

/* on the sample. I* 



Appendix D: Generator Code 219 

new-i-data = 0.999999; 
if(new-i-data == -1 .OO) 
new-i-data = -0.999999; 
if(new-q-data == 1 .O) 
new-%data = 0.999999; 
if(new-q-data == -1 .OO) 
new-Cdata = -0.999999; 
tmpl = new-i-data; 
if(tmp1 >= 0) 
{ 
f prin tf (out1 ,"O\n") ; 
1 
else 
{ 
f p ri ntf (ou t 1 ,I1 1 \n") ; 
tmpl *= -1.0; 
tmpl = 1 .O - tmpl ; 

1 

{ 
for(bk = 0; bk < 5; bk++) 

tmpl *= 2.0; 
tmp2 = modf(tmp1, &tmp3); 
tmp = 1 * tmp3; 
f p rin tf (ou t 1 , "%d\n" , tm p) ; 
tmpl =tmp2; 
1 
tmpl = new-q-data; 
if(tmp1 >= 0) 
{ 
f prin tf (ou t 1 ,"O\n") ; 
1 
else 
{ 
fprin tf (out 1 ,'I 1 \n") ; 
tmpl *= -1.0; 
tmpl = 1 .O - tmpl ; 

1 
for(bk = 0; bk c 5; bk++) 
{ 
tmpl *= 2.0; 
tmp2 = modf(tmp1, &tmp3); 
tmp = 1 * tmp3; 
f p ri n tf (ou t 1 ,"%d\n", t m p) ; 



Appendix D: Generator Code 220 

tmpl = tmp2; 
1 

0.4 Programming The Phase Estimate ROM 

#include cstdio.h> 
#include cmath.h> 

void main() 
{ 

double one, two, three, i-data, %data, phase-est; 
double tmpl , tmp2, tmp3, pi = 3.1 41 592654, store; 
int bk, tmp; 
FILE *out1 ; 
out1 = fopen("phase.dat","w"); 

for(i-data = 0.0; i-data c 8.0; i-data++) 
{ 
for(q_data = 0.0; q-data c 8.0; q_data++) 
{ 
if(i-data == 0.0) 
{ 
i f ( tdata == 0.0) 
{ 
phase-est = 0.0; 
1 
else 
{ 
phase-est = pi / 8.0; 
1 
1 
else 
{ 
phase-est = (atan2(q_data,i_data)) / -4.0; 
if(phase-est 0.0) 

phase-est += (2.0 * pi); 
1 



Appendix D: Generator Code 221 

1 
store = phase-est * 51 2.0 / (pi * 1024.0); 
if(store == 1 .O) 
{ 
store = 0.999999; 
1 
tmpl =store; 
for(bk = 0.0; bk 10.0; bk++) 
{ 
tmpl *=2.0; 
tmp2 = modf(tmp1, &tmp3); 
tmp = 1 * tmp3; 
if(bk >= 2.0) 
{ 
f p ri n tf (ou t 1 ," [%d]\n" , t m p) ; 
1 
tmpl = tmp2; 
1 
1 
for(q-data = -8.0; q-data e 0.0; q_data++) 
{ 
if(i-data == 0.0) 
1 
phase-est = -1 -0 * pi / 8.0; 
1 
else 
{ 
phase-est = (atan2(cdata,iqdata)) / -4.0; 
if(phase-est 0.0) 
{ 
phase-est += (2.0 * pi); 
1 
1 
store = phase-est * 512.0 / (pi * 1024.0); 
if(store == 1 .O) 
{ 
store = 0.999999; 
1 
tmpl =store; 
for(bk = 0.0; bk 10.0; bk++) 
{ 
tmpl *= 2.0; 
tmp2 = modf(tmp1, &tmp3); 
tmp = 1 * tmp3; 
if(bk >= 2.0) 
{ 



Appendix D: Generator Code 222 

f p ri n tf (ou t 1 ,"[ %d]\n" , tm p) ; 
I 

tmpl = tmp2; 
1 
1 
1 
for(i-data = -8.0; i-data e 0.0; i-data++) 
{ 
for(q_data = 0.0; q-data e 8.0; q_data++) 

phase-est = (atan2(q_data,i_data)) / -4.0; 
if(phase-est e 0.0) 

phase-est += (2.0 pi); 

I 

E 
I 
store = phase-est * 51 2.0 / (pi * 1024.0); 
if(store == 1 .O) 

store = 0.999999; 

tmpl =store; 
for(bk = 0.0; bk c 10.0; bk++) 

tmpl *= 2.0; 
tmp2 = modf(tmp1, &tmp3); 
tmp = 1 * tmp3; 
if(bk >= 2.0) 

f prin tf (ou t 1 ,"[%d]\n", tm p) ; 

{ 

1 

{ 

{ 

tmpl =tmp2; 
I 
I 
for(q_data = -8.0; q_data e 0.0; q-data++) 
{ 
phase-est = (atan2(q_data,i_data)) / -4.0; 
if(phase-est c 0.0) 
{ 
phase-est += (2.0 * pi); 
1 



Appendix D: Generator Code 223 

store = phase-est * 51 2.0 / (pi * 1024.0); 
if(store == 1 .O) 
{ 
store = 0.999999; 
I 
tmpl =store; 
for(bk = 0.0; bk 10.0; bk++) 
{ 
tmpl *=2.0; 
tmp2 = modf(tmp1, &tmp3); 
tmp = 1 * tmp3; 
if(bk >= 2.0) 
{ 
f p r i n tf (ou t 1 , " [%d]\n " , t m p) ; 
I 

tmpl = tmp2; 
I 
1 
I 
1 



References 

M. Miller, B. Vucetic, L. Berry, Satellite Communications: Mobile 
and Fixed Services, Klewer Academic Publishers, Norwell, 
Massachusetts, 1993, page 14. 

David Wagner, “VLSI Architecture Design of TDM High Data Rate 
QPSK Demodulator”, University of Toledo, September 23, 1 992. 

Simon Haykin, DigitaYCommunications, John Wiley and Sons, 
New York, New York,I 988, pages 284-290. 

Simon Haykin, An Introduction to Analog and Digital 
Communications, John Wiley and Sons, New York, New 
York,I 989, page 566. 

Charles Baugh, Bruce Wooley, “A Two’s Complement Parallel 
Array Multiplication Algorithm”, IEEE Transactions on Computers, 
VoI. C-22, No. 12, December 1973. 

Fang Lu, Henry Samueli, “A 200-MHz CMOS Pipelined Multiplier- 
Accumulator Using a Quasi-Domino Dynamic Full-Adder Cell 
Design”, IEEE Journal of Solid-state Circuits, Vol. No. 2, February 
1993. 

Quangfu Zhao, Yoshiaki Tadokoro, “A Simple Design of FIR 
Filters with Powers of Two Coefficients”, IEEE Transactions on 
Circuits and Systems, Vol. 35, No. 5, May 1988. 

224 



References 225 

8.) Yong Lim, Sydney Parker, “FIR Filter Design Over a Discrete 
Powers of Two Coefficient Space”, IEEE Transactions on 
Acoustics, Speech, and Signal Processing, Vol. ASSP-31, No. 3, 
June 1983. 

9.) A.J. Viterbi and A.M. Viterbi, “Nonlinear Estimation of PSK 
Modulated Carrier Phase With Application To Burst Digital 
Transmission”, IEEE Transactions on Information Theory, pages 
543-51, July 1983. 

10.) T. Pratt and C. Bostian, Satellite Communications, Wiley and 
Sons, New York, New York, 1986, pages 245-47. 

11 .) Neil Weste, Kamran Eshraghian, Principles of CMOS VLSl 
Design, A System Perspective, 2nd Edition, Addison-Wesley 
Publishing Co., New York, New York, 1993, Chapter 4-5. 

12.) Yong Dhong, C.P. Tsang, “High Speed CMOS POS PLA Using 
Pre-discharged OR Array and Charge Sharing AND Array”, IEEE 
Transactions on Circuits and Systems-ll: Analog and Digital 
Signal Processing, VoI. 39, No. 8, August 1992 

13.) William H. Press, et. at., Numerical Recipes in C, Second €dition, 
Cambridge University Press, 1988, page 288. 

14.) M. Jeruchim, P. Balaban, K. Shanmugan, Simulation of 
Communication Systems, Plenum Press, New York, New York, 
1992, pages 1-1 1. 

15.) Kurt Mhueller, Maarkus Muller, “Timing Recovery in Digital 
Synchronous Data Receivers”, IEEE Transactions on 
Communications, Vol. COM-24, No. 5. May 1974. 



Ref e ren ces 226 

16.) Floyd Gardner, “A BPSWQPSK Timing-Error Detector for 
Sampled Receivers”, IEEE Transactions on Communications, 
Vol. COM-34, No. 5, May 1986. 

17.) Benette Wong, Henry Samueli, “A 200 MHz All Digital QAM 
Modulator and Demodulator in 1.2m CMOS for Digital Radio 
Applications”. IEEE Journal of Solid-state Circuits, Vol. 26, No. 
12, December 1991. 


